• 제목/요약/키워드: Microbial interactions

검색결과 151건 처리시간 0.024초

Recent insight and future techniques to enhance rumen fermentation in dairy goats

  • Mamuad, Lovelia L.;Lee, Sung Sill;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8_spc호
    • /
    • pp.1321-1330
    • /
    • 2019
  • Recent development of novel techniques in systems biology have been used to improve and manipulate the rumen microbial ecosystem and gain a deeper understanding of its physiological and microbiological interactions and relationships. This provided a deeper insight and understanding of the relationship and interactions between the rumen microbiome and the host animal. New high-throughput techniques have revealed that the dominance of Proteobacteria in the neonatal gut might be derived from the maternal placenta through fetal swallowing of amniotic fluid in utero, which gradually decreases in the reticulum, omasum, and abomasum with increasing age after birth. Multi "omics" technologies have also enhanced rumen fermentation and production efficiency of dairy goats using dietary interventions through greater knowledge of the links between nutrition, metabolism, and the rumen microbiome and their effect in the environment. For example, supplementation of dietary lipid, such as linseed, affects rumen fermentation by favoring the accumulation of ${\alpha}$-linolenic acid biohydrogenation with a high correlation to the relative abundance of Fibrobacteriaceae. This provides greater resolution of the interlinkages among nutritional strategies, rumen microbes, and metabolism of the host animal that can set the foundation for new advancements in ruminant nutrition using multi 'omics' technologies.

The Interkingdom Interaction with Staphylococcus Influences the Antifungal Susceptibility of the Cutaneous Fungus Malassezia

  • Juan Yang;Sungmin Park;Hyun Ju Kim;Sang Jun Lee;Won Hee Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.180-187
    • /
    • 2023
  • The skin is a dynamic ecosystem on which diverse microbes reside. The interkingdom interaction between microbial species in the skin microbiota is thought to influence the health and disease of the skin although the roles of the intra- and interkingdom interactions remain to be elucidated. In this context, the interactions between Malassezia and Staphylococcus, the most dominant microorganisms in the skin microbiota, have gained attention. This study investigated how the interaction between Malassezia and Staphylococcus affected the antifungal susceptibility of the fungus to the azole antifungal drug ketoconazole. The susceptibility was significantly decreased when Malassezia was co-cultured with Staphylococcus. We found that acidification of the environment by organic acids produced by Staphylococcus influenced the decrease of the ketoconazole susceptibility of M. restricta in the co-culturing condition. Furthermore, our data demonstrated that the significant increased ergosterol content and cell membrane and wall thickness of the M. restricta cells grown in the acidic environment may be the main cause of the altered azole susceptibility of the fungus. Overall, our study suggests that the interaction between Malassezia and Staphylococcus influences the antifungal susceptibility of the fungus and that pH has a critical role in the polymicrobial interaction in the skin environment.

Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria

  • Se Rin Choi;Hyunji Lee;Digar Singh;Donghyun Cho;Jin-Oh Chung;Jong-Hwa Roh;Wan-Gi Kim;Choong Hwan Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1317-1328
    • /
    • 2023
  • Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.

Genetic Diversity of Cultivable Plant Growth-Promoting Rhizobacteria in Korea

  • Kim, Won-Il;Cho, Won-Kyong;Kim, Su-Nam;Chu, Hyo-Sub;Ryu, Kyoung-Yul;Yun, Jong-Chul;Park, Chang-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.777-790
    • /
    • 2011
  • To elucidate the biodiversity of plant growth-promoting rhizobacteria (PGPR) in Korea, 7,638 bacteria isolated from the rhizosphere of plant species growing in many different regions were screened. A large number of PGPR were identified by testing the ability of each isolate to promote the growth of cucumber seedlings. After redundant rhizobacteria were removed via amplified rDNA restriction analysis, 90 strains were finally selected as PGPR. On the basis of 16S ribosomal RNA sequences, 68 Gram-positive (76%) and 22 Gram-negative (24%) isolates were assigned to 21 genera and 47 species. Of these genera, Bacillus (32 species) made up the largest complement, followed by Paenibacillus (19) and Pseudomonas (11). Phylogenetic analysis showed that most of the Grampositive PGPR fell into two categories: low- and high- G+C (Actinobacteria) strains. The Gram-negative PGPR were distributed in three categories: ${\alpha}$-proteobacteria, ${\beta}$- proteobacteria, and ${\gamma}$-proteobacteria. To our knowledge, this is the largest screening study designed to isolate diverse PGPR. The enlarged understanding of PGPR genetic diversity provided herein will expand the knowledge base regarding beneficial plant-microbe interactions. The outcome of this research may have a practical effect on crop production methodologies.

Tuber borchii Shapes the Ectomycorrhizosphere Microbial Communities of Corylus avellana

  • Li, Xiaolin;Zhang, Xiaoping;Yang, Mei;Yan, Lijuan;Kang, Zongjing;Xiao, Yujun;Tang, Ping;Ye, Lei;Zhang, Bo;Zou, Jie;Liu, Chengyi
    • Mycobiology
    • /
    • 제47권2호
    • /
    • pp.180-190
    • /
    • 2019
  • In this study, eight-month-old ectomycorrhizae of Tuber borchii with Corylus avellana were synthesized to explore the influence of T. borchii colonization on the soil properties and the microbial communities associated with C. avellana during the early symbiotic stage. The results showed that the bacterial richness and diversity in the ectomycorrhizae were significantly higher than those in the control roots, whereas the fungal diversity was not changed in response to T. borchii colonization. Tuber was the dominant taxon (82.97%) in ectomycorrhizae. Some pathogenic fungi, including Ilyonectria and Podospora, and other competitive mycorrhizal fungi, such as Hymenochaete, had significantly lower abundance in the T. borchii inoculation treatment. It was found that the ectomycorrhizae of C. avellana contained some more abundant bacterial genera (e.g., Rhizobium, Pedomicrobium, Ilumatobacter, Streptomyces, and Geobacillus) and fungal genera (e.g., Trechispora and Humicola) than the control roots. The properties of rhizosphere soils were also changed by T. borchii colonization, like available nitrogen, available phosphorus and exchangeable magnesium, which indicated a feedback effect of mycorrhizal synthesis on soil properties. Overall, this work highlighted the interactions between the symbionts and the microbes present in the host, which shed light on our understanding of the ecological functions of T. borchii and facilitate its commercial cultivation.

Identification of Distinct Vaginal Microbiota Signatures Contributing Toward Preterm Birth Using an Integrative Computational Approach

  • Sudeepti Kulshreshtha;Priyanka Narad;Brojen Singh;Deepak Modi;Abhishek Sengupta
    • 한국미생물·생명공학회지
    • /
    • 제51권1호
    • /
    • pp.109-123
    • /
    • 2023
  • Preterm birth (PTB) is defined as giving birth prior to the 37th week of pregnancy and is a major cause of infant mortality. Studies have indicated that the vaginal microbiota's composition and its dysbiosis, particularly during pregnancy, may play a major role in PTB. While previous research work concentrated on well-studied microorganisms such as Lactobacillus, Prevotella, Gardnerella, various other microbes, and their significance in the vaginal microbiota's stability remain unknown. Moreover, current studies have focused primarily on the relative abundances of the microbes found, without considering their interactions with other members of the vaginal microbiota. In this work, we developed a novel computational approach and performed taxonomic classification of vaginal microbiota samples stratified longitudinally (Term/PTB) to observe compositional disparities and find underexamined microbes that may be contributing to PTB. Furthermore, we carried out a correlational analysis to build a microbial co-interaction network and investigated the functional implications of the genes present in both Term and PTB samples. The co-occurrence network revealed that Lactobacillus acts in solidarity to maintain the stability of the vaginal microbiota and did not have strong co-interactions with any of the other microbes. Similarly, microbes with strong interactions with Atopobium, a well-known marker microbe of PTB, were also observed. Additionally, several genes such as PTXA, FANCM, GPX, and DUSP were found to be playing an important role in the occurrence of PTB. This study provides a novel conceptual framework revealing distinct vaginal microbiota signatures that could be potential therapeutic targets for the prevention of PTB.

비살균 숙성 치즈의 미생물균총 분석에 이용되는 새롭게 개발된 분자생물학적 방법: 총설 (Novel Molecular-Based Approaches for Analyzing Microbial Diversity in Raw-Milk Long-Ripened Cheeses: A Review)

  • 김동현;천정환;김현숙;이수경;김홍석;이주연;임진혁;송광영;김영지;강일병;정다나;박진형;장호석;서건호
    • Journal of Dairy Science and Biotechnology
    • /
    • 제34권1호
    • /
    • pp.9-20
    • /
    • 2016
  • Various microflora, including lactic acid bacteria, are important and necessary components of various cheeses and have significant roles in cheese manufacturing and ripening. In general, the starter culture and secondary microflora could affect the physicochemical properties of various cheeses and could contribute to modifications during manufacturing and ripening. Therefore, during cheese manufacturing and ripening, microbial diversity may depend on continuous interactions among microflora and various environmental conditions. The microbial diversity of cheese is very complex and difficult to control using the classical microbiological techniques. However, recent culture-independent methods have been rapidly developed for microflora in cheese, which could be directly detected using DNA (and/or RNA) in combination with culture-dependent methods. Therefore, this review summarizes state-of-the-art molecular methods to analyze microbial communities in order to understand the properties that affect quality and ripening as well as the complex microbial diversity of various raw-milk, long-ripened cheeses.

Analysis of Double Stranded DNA-dependent Activities of Deinococcus radiodurans RecA Protein

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.

Overview of Innate Immunity in Drosophila

  • Kim, Tae-Il;Kim, Young-Joon
    • BMB Reports
    • /
    • 제38권2호
    • /
    • pp.121-127
    • /
    • 2005
  • Drosophila protects itself from infection by microbial organisms by means of its pivotal defense, the so-called innate immunity system. This is its sole defense as it lacks an adaptive immunity system such as is found in mammals. The strong conservation of innate immunity systems in organisms from Drosophila to mammals, and the ease with which Drosophila can be manipulated genetically, makes this fly a good model system for investigating the mechanisms of virulence of a number of medically important pathogens. Potentially damaging endogenous and/or exogenous challenges sensed by specific receptors initiate signals via the Toll and/or Imd signaling pathways. These in turn activate the transcription factors Dorsal, Dorsal-related immune factor (Dif) and Relish, culminating in transcription of genes involved in the production of antimicrobial peptides, melanization, phagocytosis, and the cytoskeletal rearrangement required for appropriate responses. Clarifying the regulatory interactions between the various pathways involved is very important for understanding the specificity and termination mechanism of the immune response.

박테리아 주화성 검사용 마이크로 플루이딕 칩 (Microfluidic chip for the analysis of bacterial chemotaxis)

  • 이상호;정헌호;김기영;이창수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1521_1522
    • /
    • 2009
  • Chemotaxis is the directed movement of cells in gradients of signaling molecules, an essential biological process that underlies morhpogenesis during development, and the recruitment of immune cells to sites of infection. Especially, bacterial chemotaxis has utilized as an important prelude to study metabolism, prey-predator relationship, symbiosis, other ecological interactions in microbial communities. Recently, novel analytical formats integrated with microfluidics were introduced to investigate the chemotaxis of the cells with the precise control of chemical gradient and small volume of cells. In this study, we present a method to detect bacterial chemotaxis by direct fluidic contacting. The developed fluidic-handling method is driven by capillary force, hydrophobic barrier and a cohesion force between fluids. We have investigated the chemotactic response of E Coli. and Pseudomonas aeruginosa to three kinds of chemoeffectors such as HEPES buffer, peptone and chloroform.

  • PDF