Browse > Article

Novel Molecular-Based Approaches for Analyzing Microbial Diversity in Raw-Milk Long-Ripened Cheeses: A Review  

Kim, Dong-Hyeon (Center for One Health, College of Veterinary Medicine, Konkuk University)
Chon, Jung-Whan (Center for One Health, College of Veterinary Medicine, Konkuk University)
Kim, Hyunsook (Dept. of Food & Nutrition, College of Human Ecology, Hanyang Univer)
Lee, Soo-Kyung (Center for One Health, College of Veterinary Medicine, Konkuk University)
Kim, Hong-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University)
Lee, Joo-Yeon (Korea Livestock Products HACCP Accreditation Service)
Yim, Jin-Hyuk (Center for One Health, College of Veterinary Medicine, Konkuk University)
Song, Kwang-Young (Center for One Health, College of Veterinary Medicine, Konkuk University)
Kim, Young-Ji (Center for One Health, College of Veterinary Medicine, Konkuk University)
Kang, Il-Byung (Center for One Health, College of Veterinary Medicine, Konkuk University)
Jeong, Dana (Center for One Health, College of Veterinary Medicine, Konkuk University)
Park, Jin-Hyeong (Center for One Health, College of Veterinary Medicine, Konkuk University)
Jang, Ho-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University)
Seo, Kun-Ho (Center for One Health, College of Veterinary Medicine, Konkuk University)
Publication Information
Journal of Dairy Science and Biotechnology / v.34, no.1, 2016 , pp. 9-20 More about this Journal
Abstract
Various microflora, including lactic acid bacteria, are important and necessary components of various cheeses and have significant roles in cheese manufacturing and ripening. In general, the starter culture and secondary microflora could affect the physicochemical properties of various cheeses and could contribute to modifications during manufacturing and ripening. Therefore, during cheese manufacturing and ripening, microbial diversity may depend on continuous interactions among microflora and various environmental conditions. The microbial diversity of cheese is very complex and difficult to control using the classical microbiological techniques. However, recent culture-independent methods have been rapidly developed for microflora in cheese, which could be directly detected using DNA (and/or RNA) in combination with culture-dependent methods. Therefore, this review summarizes state-of-the-art molecular methods to analyze microbial communities in order to understand the properties that affect quality and ripening as well as the complex microbial diversity of various raw-milk, long-ripened cheeses.
Keywords
cheese; raw milk; long-ripened; lactic acid bacteria; culture-dependent; culture-independent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hugenholtz, P., Goebel, B. M. and Pace, N. R. 1998. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:4765-4774.
2 Jany, J. L. and Barbier, G. 2008. Culture independent methods for identifying microbial communities in cheese. Food Microbiol. 25:839-848.   DOI
3 Gatti, M., De Dea Lindner, J., De Lorentiis, A., Bottari, B., Santarelli, M. and Bernini, V. 2008. Dynamics of whole and lysed bacterial cells during Parmigiano-Reggiano cheese production and ripening. Appl. Environ. Microbiol. 74:6161-6167.   DOI
4 Josefsen, M. H., Lofstrom, C., Hansen, T. B., Christensen, L. S., Olsen, J. E. and Hoorfar, J. 2010. Rapid quantification of viable Campylobacter bacteria on chicken carcasses, using real-time PCR and propidiummonoazide treatment, as a tool for quantitative risk assessment. Appl. Environ. Microbiol. 76:5097-5104.   DOI
5 Juste, A., Thomma, B. P. and Lievens, B. 2008. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol. 25:745-761.   DOI
6 Lazzi, C., Bove, C. G., Sgarbi, E., Gatti, M., La Gioia, F. and Torriani, S. 2009. Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus. J. Microbiol. Methods 79:48-54.   DOI
7 Li, W., Raoult, D. and Fournier, P. E. 2009. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33:892-916.   DOI
8 Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522.
9 Martin-Platero, A. M., Maqueda, M., Valdivia, E., Purswani, J. and Martinez-Bueno, M. 2009. Polyphasic study of microbial communities of two Spanish farmhouse goats' milk cheese from Sierra Aracena. Food Microbiol. 26:294-304.   DOI
10 Mancini, A., Lazzi, C., Bernini, V., Neviani, E. and Gatti, M. 2012. Identification of dairy lactic acid bacteria by tRNA Ala-23S rDNA-RFLP. J. Microbiol. Methods 91:380-390.   DOI
11 Monfredini, L., Settanni, L., Poznanski, E., Cavazza, A. and Franciosi, E. 2012. The spatial distribution of bacteria in Grana-cheese during ripening. Syst. Appl. Microbiol. 35:54-63.   DOI
12 Neviani, E., Bottari, B., Lazzi, C. and Gatti, M. 2013. New developments in the study of the microbiota of raw-milk, long-ripened cheeses by molecular methods: the case of Grana Padano and Parmigiano Reggiano." Frontiers in microbiology 4:36.
13 Mounier, J., Monnet, C., Jacques, N., Antoinette, A. and Irlinger, F. 2009. Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches. Int. J. Food Microbiol. 133:31-37.   DOI
14 Mucchetti, G. and Neviani, E. 2006. Microbiologia e Tecnologia Lattiero Casearia, Qualita e Sicurezza. Milano: Tecniche Nuove.
15 Myers, R. M., Maniatis, T. and Lerman, L. S. 1987. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501-527.
16 Neviani, E., De Dea Lindner, J., Bernini, V. and Gatti, M. 2009. Recovery and differentiation of long ripened cheese microflora through a new cheese-based cultural medium. Food Microbiol. 26:240-245.   DOI
17 Solieri, L., Bianchi, A. and Giudici, P. 2012. Inventory of non starter lactic acid bacteria from ripened Parmigiano Reggiano cheese as assessed by a culture dependent multiphasic approach. Syst. Appl. Microbiol. 35:270-277.   DOI
18 Santarelli, M., Gatti, M., Lazzi, C., Bernini, V., Zapparoli, G. A. and Neviani, E. 2008. Whey starter for Grana Padano cheese: effect of technological parameters on viability and composition of the microbial community. J. Dairy Sci. 91:883-891.   DOI
19 Schaad, N. W., Cheong, S. S., Tamaki, S., Hatziloukas, E. and Panapoulos, N. J. 1995. A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola inbeen seed extracts. Phytopathology 85:243-248.   DOI
20 Settanni, L. and Moschetti, G. 2010. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 27:691-697.   DOI
21 Suzuki, M., Rappe, M. S. and Giovannoni, S. J. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64:4522-4529.
22 Tyler, K. D., Wang, G., Tyler, S. D. and Johnson, W. M. 1997. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J. Clin. Microbiol. 35:339-346.
23 Vasquez, A., Molin, G., Pettersson, B., Antonsson, M. and Ahrne, S. 2005. DNA-based classification and sequence heterogeneities in the 16S rRNA genes of Lactobacillus casei/paracasei and related species. Syst. Appl. Microbiol. 28:430-441.   DOI
24 Xiao, W. and Oefner, P. J. 2001. Denaturing high-performance liquid chromatography: a review. Hum. Mutat. 17:439-474.   DOI
25 Rasolofo, E. A., St-Gelais, D., La Pointe, G. and Roy, D. 2010. Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk. Int. J. Food Microbiol. 138:108-118.   DOI
26 Ogier, J. C., Lafarge, V., Girard, V., Rault, A., Maladen, V. and Gruss, A. 2004. Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient electrophoresis. Appl. Environ. Microbiol. 70:5628-5643.   DOI
27 Parayre, S., Falentin, H., Madec, M., Sivieri, K., Le Dizes, A. and Sohier, D. 2007. Easy DNA extraction and optimization of PCR-temporal temperature gel electrophoresis to identify the predominant high and low GC-content bacteria from dairy products. J. Microbiol. Methods 69:431-441.   DOI
28 Quigley, L., O'Sullivan, O., Beresford, T. P., Ross, R. P., Fitzgerald, F. G. and Cotter, P. D. 2011. Molecular approaches to analyzing the microbial composition of raw milk and raw milk cheese. Int. J. Food Microbiol. 150:81-94.   DOI
29 Rademaker, J. L. W., Hoolwerf, J. D., Wagendorp, A. A. and te Giffel, M. C. 2006. Assessment of microbial population dynamics during yoghurt and hard cheese fermentation and ripening by DNA population fingerprinting. Int. Dairy J. 16:457-466.   DOI
30 Randazzo, C. L., Caggia, C. and Neviani, E. 2009. Application of molecular approaches to study lactic acid bacteria in artisanal cheeses. J. Microbiol. Methods 78:1-9.   DOI
31 Ritchie, N. J., Schutter, M. E., Dick, R. P. and Myrold, D. D. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66:1668-1675.   DOI
32 Rossetti, L., Carminati, D., Zago, M. and Giraffa, G. 2009. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters. Int. J. Food Microbiol. 130:70-73.   DOI
33 Rudi, K., Naterstad, K., Dromtorp, S. M. and Holo, H. 2005. Detection of viable and dead Listeria monocytogenes on gouda-like cheese by real-time PCR. Lett. Appl. Microbiol. 40:301-306.   DOI
34 Yoshino, K., Nishigaki, K. and Husimi, Y. 1991. Temperature sweep gel electrophoresis: a simple method to detect point mutations. Nucleic Acids Res. 19:3153.   DOI
35 Zago, M., Bonvini, B., Carminati, D. and Giraffa, G. 2009. Detection and quantification of Enterococcus gilvusin cheese by real-time PCR. Syst. Appl. Microbiol. 32:514-521.   DOI
36 Zago, M., Fornasari, M. E., Rossetti, L., Scano, L., Carminati, D. and Giraffa, G. 2007. Population dynamics of lactobacilli in Grana cheese. Ann. Microbiol. 57:349-353.   DOI
37 Rossetti, L., Fornasari, M. E., Gatti, M., Lazzi, C., Neviani, E. and Giraffa, G. 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. Int. J. Food Microbiol. 127:168-171.   DOI
38 Roy, D., Sirois, S. and Vincent, D. 2001. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis. Curr. Microbiol. 42:282-289.
39 Beresford, M. R., Andrew, P. W. and Shama, G. 2001. Listeria monocytogenes adheres to many materials found in food-processing environments. J. Appl. Microbiol. 90:1000-1005.   DOI
40 Andrighetto, C., Marcazzan, G. and Lombardi, A. 2004. Use of RAPD-PCR and TTGE for the evaluation of biodiversity of whey cultures for Grana Padano cheese. Lett. Appl. Microbiol. 38:400-405.   DOI
41 Bove, C. G., De Dea Lindner, J., Lazzi, C., Gatti, M. and Neviani, E. 2011. Evaluation of genetic polymorphism among Lactobacillus rhamnosus nonstarter Parmigiano Reggiano cheeses rains. Int. J. Food Microbiol. 144:569-572.   DOI
42 Bodrossy, L., Stralis-Pavese, N., Konrad-Koszler, M., Weilharter, A., Reichenauer, T. G. and Shofer, D. 2006. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl. Environ. Microbiol. 72:1672-1676.   DOI
43 Bonaiti, C., Parayre, S. and Irlinger, F. 2006. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations. Int. J. Food Microbiol. 107:171-179.   DOI
44 Bottari, B., Agrimonti, C., Gatti, M., Neviani, E. and Marmiroli, N. 2013. Development of a multiplexreal time PCR to detect thermophilic lactic acid bacteria in natural whey starters. Int. J. Food Microbiol. 160:290-297.   DOI
45 Bottari, B., Santarelli, M., Neviani, E. and Gatti, M. 2010. Natural whey starter for Parmigiano Reggiano: culture-independent approach. J. Appl. Microbiol. 108:1676-1684.   DOI
46 Bouton, Y., Guyot, P., Beuvier, E., Tailliez, P. and Grappin, R. 2002. Use of PCR-based methods and PFGE for typing and monitoring homofermentative lactobacilli during Comte cheese ripening. Int. J. Food Microbiol. 76:27-38.   DOI
47 Broadbent, J. R., Cai, H., Larsen, R. L., Hughes, J. E., Welker, D. L. and DeCarvalho, V. G. 2011. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J. Dairy Sci. 94:4313-4328.   DOI
48 Coppola, R., Nanni, M., Iorizzo, M., Sorrentino, A., Sorrentino, E. and Chiavari, C. 2000. Microbiological characteristics of Parmigiano Reggiano cheese during the cheese making and the first months of the ripening. Lait 80:479-490.   DOI
49 Chagnaud, P., Machinis, K., Coutte, L. A., Marecat, A. and Mercenier, A. 2001. Rapid PCR based procedure to identify lactic acid bacteria: application to six common Lactobacillus species. J. Microbiol. Methods 44:139-148.   DOI
50 Clerc, A., Manceau, C. and Nesme, X. 1998. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae. Appl. Environ. Microbiol. 64:1180-1187.
51 Coppola, S., Blaiotta, G. and Ercolini, D. 2008. "Dairy products," in Molecular techniques in the microbial ecology of fermented foods, eds L. Cocolin and D. Ercolini (New York: Springer), 31-90.
52 Cremonesi, P., Vanoni, L., Morandi, S., Silvetti, T., Castiglioni, B. and Brasca, M. 2011. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillusdelbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese. Int. J. Food Microbiol. 146:207-211.   DOI
53 De Dea Lindner, J., Bernini, V., DeLorentiis, A., Pecorari, A., Neviani, E. and Gatti, M. 2008. Parmigiano Reggiano cheese: evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening. Dairy Sci. Technol. 88:511-523.   DOI
54 de Man, J. C., Rogosa, M. and Sharpe, M. E. 1960. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23:130-135.   DOI
55 Ercolini, D., Frisso, G., Mauriello, G., Salvatore, F. and Coppola, S. 2008. Microbial diversity in natural whey cultures used for the production of Caciocavallo Silano PDO cheese. Int. J. Food Microbiol. 124:164-170.   DOI
56 Delbes, C., Ali-Mandjee, L. and Montel, M. C. 2007. Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses. Appl. Environ. Microbiol. 73:1882-1891.   DOI
57 Di Cagno, R., Minervini, G., Sgarbi, E., Lazzi, C., Bernini, V. and Neviani, E. 2010. Comparison of phenotypic (Biolog System) and genotypic (random amplified polymorphic DNA-polymerase chain reaction, RAPD-PCR, and amplified fragment length polymorphism, AFLP) methods for typing Lactobacillus plantarum isolates from raw vegetables and fruits. Int. J. Food Microbiol. 143:246-253.   DOI
58 Dickie, L. A., Xu, B. and Koide, R. T. 2002. Vertical niche differentiation of ectomycorrhizal hyphae in soilas shown by T-RFLP analysis. New Phytol. 156:527-535.   DOI
59 Duthoit, F., Godon, J. and Montel, M. 2003. Bacterial community dynamics during production of registered designation of origin Salers cheese as evaluated by 16S rRNA single strand conformation polymorphism analysis. Appl. Environ. Microbiol. 69:3840-3848.   DOI
60 El Baradei, G., Delacroix-Buchet, A. and Ogier, J. C. 2007. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese. Appl. Environ. Microbiol. 73:1248-1255.   DOI
61 Florez, A. and Mayo, B. 2006. Fungal diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. Int. J. Food. Microbiol. 10:165-171.
62 Giraffa, G., Lazzi, C., Gatti, M., Rossetti, L., Mora, D. and Neviani, E. 2003. Molecular typing of Lactobacillus delbrueckii of dairy origin by PCR-RFLP of protein-coding genes. Int. J. Food Microbiol. 82:163-172.   DOI
63 Fornasari, M. E., Rossetti, L., Carminati, D. and Giraffa, G. 2006. Cultivability of Streptococcus thermophilus in Grana Padano cheese whey starters. FEMS Microbiol. Lett. 257:139-144.   DOI
64 Gala, E., Landi, S., Solieri, L., Nocetti, M., Pulvirenti, A. and Giudici, P. 2008. Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese. Int. J. Food Microbiol. 125:347-351.   DOI
65 Gatti, M., Bernini, V., Lazzi, C. and Neviani, E. 2006. Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters. Lett. Appl. Microbiol. 42:338-343.   DOI
66 Gatti, M., Lazzi, C., Rossetti, L., Mucchetti, G. and Neviani, E. 2003. Biodiversity in Lactobacillus helveticus strains present in natural whey starter used for Parmigiano Reggiano cheese. J. Appl. Microbiol. 95:463-470.   DOI
67 Giraffa, G. and Neviani, E. 2001. DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Int. J. Food Microbiol. 67:19-34.   DOI
68 Head, I. M., Saunders, J. R. and Pickup, R. W. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35:1-21.   DOI
69 Herrero-Fresno, A., Martinez, N., Sanchez-Llana, E., Diaz, M., Fernandez, M. and Martin, M. C. 2012. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model. Int. J. Food Microbiol. 157:297-304.   DOI