Novel Molecular-Based Approaches for Analyzing Microbial Diversity in Raw-Milk Long-Ripened Cheeses: A Review

비살균 숙성 치즈의 미생물균총 분석에 이용되는 새롭게 개발된 분자생물학적 방법: 총설

  • Kim, Dong-Hyeon (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Chon, Jung-Whan (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hyunsook (Dept. of Food & Nutrition, College of Human Ecology, Hanyang Univer) ;
  • Lee, Soo-Kyung (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Hong-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Lee, Joo-Yeon (Korea Livestock Products HACCP Accreditation Service) ;
  • Yim, Jin-Hyuk (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Song, Kwang-Young (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kim, Young-Ji (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Kang, Il-Byung (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Jeong, Dana (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Park, Jin-Hyeong (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Jang, Ho-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University) ;
  • Seo, Kun-Ho (Center for One Health, College of Veterinary Medicine, Konkuk University)
  • 김동현 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 천정환 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김현숙 (한양대학교 생활과학대학 식품영양학과) ;
  • 이수경 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김홍석 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 이주연 (축산물안전관리인증원) ;
  • 임진혁 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 송광영 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 김영지 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 강일병 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 정다나 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 박진형 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 장호석 (건국대학교 수의과대학 식품안전건강연구소) ;
  • 서건호 (건국대학교 수의과대학 식품안전건강연구소)
  • Received : 2016.01.03
  • Accepted : 2016.02.03
  • Published : 2016.03.31

Abstract

Various microflora, including lactic acid bacteria, are important and necessary components of various cheeses and have significant roles in cheese manufacturing and ripening. In general, the starter culture and secondary microflora could affect the physicochemical properties of various cheeses and could contribute to modifications during manufacturing and ripening. Therefore, during cheese manufacturing and ripening, microbial diversity may depend on continuous interactions among microflora and various environmental conditions. The microbial diversity of cheese is very complex and difficult to control using the classical microbiological techniques. However, recent culture-independent methods have been rapidly developed for microflora in cheese, which could be directly detected using DNA (and/or RNA) in combination with culture-dependent methods. Therefore, this review summarizes state-of-the-art molecular methods to analyze microbial communities in order to understand the properties that affect quality and ripening as well as the complex microbial diversity of various raw-milk, long-ripened cheeses.

Keywords

References

  1. Andrighetto, C., Marcazzan, G. and Lombardi, A. 2004. Use of RAPD-PCR and TTGE for the evaluation of biodiversity of whey cultures for Grana Padano cheese. Lett. Appl. Microbiol. 38:400-405. https://doi.org/10.1111/j.1472-765X.2004.01504.x
  2. Beresford, M. R., Andrew, P. W. and Shama, G. 2001. Listeria monocytogenes adheres to many materials found in food-processing environments. J. Appl. Microbiol. 90:1000-1005. https://doi.org/10.1046/j.1365-2672.2001.01330.x
  3. Bodrossy, L., Stralis-Pavese, N., Konrad-Koszler, M., Weilharter, A., Reichenauer, T. G. and Shofer, D. 2006. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl. Environ. Microbiol. 72:1672-1676. https://doi.org/10.1128/AEM.72.2.1672-1676.2006
  4. Bonaiti, C., Parayre, S. and Irlinger, F. 2006. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations. Int. J. Food Microbiol. 107:171-179. https://doi.org/10.1016/j.ijfoodmicro.2005.08.028
  5. Bottari, B., Agrimonti, C., Gatti, M., Neviani, E. and Marmiroli, N. 2013. Development of a multiplexreal time PCR to detect thermophilic lactic acid bacteria in natural whey starters. Int. J. Food Microbiol. 160:290-297. https://doi.org/10.1016/j.ijfoodmicro.2012.10.011
  6. Bottari, B., Santarelli, M., Neviani, E. and Gatti, M. 2010. Natural whey starter for Parmigiano Reggiano: culture-independent approach. J. Appl. Microbiol. 108:1676-1684. https://doi.org/10.1111/j.1365-2672.2009.04564.x
  7. Bouton, Y., Guyot, P., Beuvier, E., Tailliez, P. and Grappin, R. 2002. Use of PCR-based methods and PFGE for typing and monitoring homofermentative lactobacilli during Comte cheese ripening. Int. J. Food Microbiol. 76:27-38. https://doi.org/10.1016/S0168-1605(02)00006-5
  8. Bove, C. G., De Dea Lindner, J., Lazzi, C., Gatti, M. and Neviani, E. 2011. Evaluation of genetic polymorphism among Lactobacillus rhamnosus nonstarter Parmigiano Reggiano cheeses rains. Int. J. Food Microbiol. 144:569-572. https://doi.org/10.1016/j.ijfoodmicro.2010.11.017
  9. Broadbent, J. R., Cai, H., Larsen, R. L., Hughes, J. E., Welker, D. L. and DeCarvalho, V. G. 2011. Genetic diversity in proteolytic enzymes and amino acid metabolism among Lactobacillus helveticus strains. J. Dairy Sci. 94:4313-4328. https://doi.org/10.3168/jds.2010-4068
  10. Chagnaud, P., Machinis, K., Coutte, L. A., Marecat, A. and Mercenier, A. 2001. Rapid PCR based procedure to identify lactic acid bacteria: application to six common Lactobacillus species. J. Microbiol. Methods 44:139-148. https://doi.org/10.1016/S0167-7012(00)00244-X
  11. Clerc, A., Manceau, C. and Nesme, X. 1998. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of Pseudomonas syringae. Appl. Environ. Microbiol. 64:1180-1187.
  12. Coppola, R., Nanni, M., Iorizzo, M., Sorrentino, A., Sorrentino, E. and Chiavari, C. 2000. Microbiological characteristics of Parmigiano Reggiano cheese during the cheese making and the first months of the ripening. Lait 80:479-490. https://doi.org/10.1051/lait:2000139
  13. Coppola, S., Blaiotta, G. and Ercolini, D. 2008. "Dairy products," in Molecular techniques in the microbial ecology of fermented foods, eds L. Cocolin and D. Ercolini (New York: Springer), 31-90.
  14. Cremonesi, P., Vanoni, L., Morandi, S., Silvetti, T., Castiglioni, B. and Brasca, M. 2011. Development of a pentaplex PCR assay for the simultaneous detection of Streptococcus thermophilus, Lactobacillusdelbrueckii subsp. bulgaricus, L. delbrueckii subsp. lactis, L. helveticus, L. fermentum in whey starter for Grana Padano cheese. Int. J. Food Microbiol. 146:207-211. https://doi.org/10.1016/j.ijfoodmicro.2011.02.016
  15. De Dea Lindner, J., Bernini, V., DeLorentiis, A., Pecorari, A., Neviani, E. and Gatti, M. 2008. Parmigiano Reggiano cheese: evolution of cultivable and total lactic microflora and peptidase activities during manufacture and ripening. Dairy Sci. Technol. 88:511-523. https://doi.org/10.1051/dst:2008019
  16. de Man, J. C., Rogosa, M. and Sharpe, M. E. 1960. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 23:130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  17. Delbes, C., Ali-Mandjee, L. and Montel, M. C. 2007. Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses. Appl. Environ. Microbiol. 73:1882-1891. https://doi.org/10.1128/AEM.01716-06
  18. Di Cagno, R., Minervini, G., Sgarbi, E., Lazzi, C., Bernini, V. and Neviani, E. 2010. Comparison of phenotypic (Biolog System) and genotypic (random amplified polymorphic DNA-polymerase chain reaction, RAPD-PCR, and amplified fragment length polymorphism, AFLP) methods for typing Lactobacillus plantarum isolates from raw vegetables and fruits. Int. J. Food Microbiol. 143:246-253. https://doi.org/10.1016/j.ijfoodmicro.2010.08.018
  19. Dickie, L. A., Xu, B. and Koide, R. T. 2002. Vertical niche differentiation of ectomycorrhizal hyphae in soilas shown by T-RFLP analysis. New Phytol. 156:527-535. https://doi.org/10.1046/j.1469-8137.2002.00535.x
  20. Duthoit, F., Godon, J. and Montel, M. 2003. Bacterial community dynamics during production of registered designation of origin Salers cheese as evaluated by 16S rRNA single strand conformation polymorphism analysis. Appl. Environ. Microbiol. 69:3840-3848. https://doi.org/10.1128/AEM.69.7.3840-3848.2003
  21. El Baradei, G., Delacroix-Buchet, A. and Ogier, J. C. 2007. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese. Appl. Environ. Microbiol. 73:1248-1255. https://doi.org/10.1128/AEM.01667-06
  22. Ercolini, D., Frisso, G., Mauriello, G., Salvatore, F. and Coppola, S. 2008. Microbial diversity in natural whey cultures used for the production of Caciocavallo Silano PDO cheese. Int. J. Food Microbiol. 124:164-170. https://doi.org/10.1016/j.ijfoodmicro.2008.03.007
  23. Florez, A. and Mayo, B. 2006. Fungal diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. Int. J. Food. Microbiol. 10:165-171.
  24. Fornasari, M. E., Rossetti, L., Carminati, D. and Giraffa, G. 2006. Cultivability of Streptococcus thermophilus in Grana Padano cheese whey starters. FEMS Microbiol. Lett. 257:139-144. https://doi.org/10.1111/j.1574-6968.2006.00155.x
  25. Gala, E., Landi, S., Solieri, L., Nocetti, M., Pulvirenti, A. and Giudici, P. 2008. Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese. Int. J. Food Microbiol. 125:347-351. https://doi.org/10.1016/j.ijfoodmicro.2008.04.008
  26. Gatti, M., Bernini, V., Lazzi, C. and Neviani, E. 2006. Fluorescence microscopy for studying the viability of micro-organisms in natural whey starters. Lett. Appl. Microbiol. 42:338-343. https://doi.org/10.1111/j.1472-765X.2006.01859.x
  27. Gatti, M., De Dea Lindner, J., De Lorentiis, A., Bottari, B., Santarelli, M. and Bernini, V. 2008. Dynamics of whole and lysed bacterial cells during Parmigiano-Reggiano cheese production and ripening. Appl. Environ. Microbiol. 74:6161-6167. https://doi.org/10.1128/AEM.00871-08
  28. Gatti, M., Lazzi, C., Rossetti, L., Mucchetti, G. and Neviani, E. 2003. Biodiversity in Lactobacillus helveticus strains present in natural whey starter used for Parmigiano Reggiano cheese. J. Appl. Microbiol. 95:463-470. https://doi.org/10.1046/j.1365-2672.2003.01997.x
  29. Giraffa, G. and Neviani, E. 2001. DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Int. J. Food Microbiol. 67:19-34. https://doi.org/10.1016/S0168-1605(01)00445-7
  30. Giraffa, G., Lazzi, C., Gatti, M., Rossetti, L., Mora, D. and Neviani, E. 2003. Molecular typing of Lactobacillus delbrueckii of dairy origin by PCR-RFLP of protein-coding genes. Int. J. Food Microbiol. 82:163-172. https://doi.org/10.1016/S0168-1605(02)00262-3
  31. Head, I. M., Saunders, J. R. and Pickup, R. W. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35:1-21. https://doi.org/10.1007/s002489900056
  32. Herrero-Fresno, A., Martinez, N., Sanchez-Llana, E., Diaz, M., Fernandez, M. and Martin, M. C. 2012. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model. Int. J. Food Microbiol. 157:297-304. https://doi.org/10.1016/j.ijfoodmicro.2012.06.002
  33. Hugenholtz, P., Goebel, B. M. and Pace, N. R. 1998. Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:4765-4774.
  34. Jany, J. L. and Barbier, G. 2008. Culture independent methods for identifying microbial communities in cheese. Food Microbiol. 25:839-848. https://doi.org/10.1016/j.fm.2008.06.003
  35. Josefsen, M. H., Lofstrom, C., Hansen, T. B., Christensen, L. S., Olsen, J. E. and Hoorfar, J. 2010. Rapid quantification of viable Campylobacter bacteria on chicken carcasses, using real-time PCR and propidiummonoazide treatment, as a tool for quantitative risk assessment. Appl. Environ. Microbiol. 76:5097-5104. https://doi.org/10.1128/AEM.00411-10
  36. Juste, A., Thomma, B. P. and Lievens, B. 2008. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiol. 25:745-761. https://doi.org/10.1016/j.fm.2008.04.009
  37. Lazzi, C., Bove, C. G., Sgarbi, E., Gatti, M., La Gioia, F. and Torriani, S. 2009. Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus. J. Microbiol. Methods 79:48-54. https://doi.org/10.1016/j.mimet.2009.07.021
  38. Li, W., Raoult, D. and Fournier, P. E. 2009. Bacterial strain typing in the genomic era. FEMS Microbiol. Rev. 33:892-916. https://doi.org/10.1111/j.1574-6976.2009.00182.x
  39. Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522.
  40. Mancini, A., Lazzi, C., Bernini, V., Neviani, E. and Gatti, M. 2012. Identification of dairy lactic acid bacteria by tRNA Ala-23S rDNA-RFLP. J. Microbiol. Methods 91:380-390. https://doi.org/10.1016/j.mimet.2012.10.003
  41. Martin-Platero, A. M., Maqueda, M., Valdivia, E., Purswani, J. and Martinez-Bueno, M. 2009. Polyphasic study of microbial communities of two Spanish farmhouse goats' milk cheese from Sierra Aracena. Food Microbiol. 26:294-304. https://doi.org/10.1016/j.fm.2008.12.004
  42. Monfredini, L., Settanni, L., Poznanski, E., Cavazza, A. and Franciosi, E. 2012. The spatial distribution of bacteria in Grana-cheese during ripening. Syst. Appl. Microbiol. 35:54-63. https://doi.org/10.1016/j.syapm.2011.07.002
  43. Mounier, J., Monnet, C., Jacques, N., Antoinette, A. and Irlinger, F. 2009. Assessment of the microbial diversity at the surface of Livarot cheese using culture-dependent and independent approaches. Int. J. Food Microbiol. 133:31-37. https://doi.org/10.1016/j.ijfoodmicro.2009.04.020
  44. Mucchetti, G. and Neviani, E. 2006. Microbiologia e Tecnologia Lattiero Casearia, Qualita e Sicurezza. Milano: Tecniche Nuove.
  45. Myers, R. M., Maniatis, T. and Lerman, L. S. 1987. Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501-527.
  46. Neviani, E., Bottari, B., Lazzi, C. and Gatti, M. 2013. New developments in the study of the microbiota of raw-milk, long-ripened cheeses by molecular methods: the case of Grana Padano and Parmigiano Reggiano." Frontiers in microbiology 4:36.
  47. Neviani, E., De Dea Lindner, J., Bernini, V. and Gatti, M. 2009. Recovery and differentiation of long ripened cheese microflora through a new cheese-based cultural medium. Food Microbiol. 26:240-245. https://doi.org/10.1016/j.fm.2009.01.004
  48. Ogier, J. C., Lafarge, V., Girard, V., Rault, A., Maladen, V. and Gruss, A. 2004. Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient electrophoresis. Appl. Environ. Microbiol. 70:5628-5643. https://doi.org/10.1128/AEM.70.9.5628-5643.2004
  49. Parayre, S., Falentin, H., Madec, M., Sivieri, K., Le Dizes, A. and Sohier, D. 2007. Easy DNA extraction and optimization of PCR-temporal temperature gel electrophoresis to identify the predominant high and low GC-content bacteria from dairy products. J. Microbiol. Methods 69:431-441. https://doi.org/10.1016/j.mimet.2007.02.011
  50. Quigley, L., O'Sullivan, O., Beresford, T. P., Ross, R. P., Fitzgerald, F. G. and Cotter, P. D. 2011. Molecular approaches to analyzing the microbial composition of raw milk and raw milk cheese. Int. J. Food Microbiol. 150:81-94. https://doi.org/10.1016/j.ijfoodmicro.2011.08.001
  51. Rademaker, J. L. W., Hoolwerf, J. D., Wagendorp, A. A. and te Giffel, M. C. 2006. Assessment of microbial population dynamics during yoghurt and hard cheese fermentation and ripening by DNA population fingerprinting. Int. Dairy J. 16:457-466. https://doi.org/10.1016/j.idairyj.2005.05.009
  52. Randazzo, C. L., Caggia, C. and Neviani, E. 2009. Application of molecular approaches to study lactic acid bacteria in artisanal cheeses. J. Microbiol. Methods 78:1-9. https://doi.org/10.1016/j.mimet.2009.04.001
  53. Rasolofo, E. A., St-Gelais, D., La Pointe, G. and Roy, D. 2010. Molecular analysis of bacterial population structure and dynamics during cold storage of untreated and treated milk. Int. J. Food Microbiol. 138:108-118. https://doi.org/10.1016/j.ijfoodmicro.2010.01.008
  54. Ritchie, N. J., Schutter, M. E., Dick, R. P. and Myrold, D. D. 2000. Use of length heterogeneity PCR and fatty acid methyl ester profiles to characterize microbial communities in soil. Appl. Environ. Microbiol. 66:1668-1675. https://doi.org/10.1128/AEM.66.4.1668-1675.2000
  55. Rossetti, L., Carminati, D., Zago, M. and Giraffa, G. 2009. A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters. Int. J. Food Microbiol. 130:70-73. https://doi.org/10.1016/j.ijfoodmicro.2009.01.003
  56. Rossetti, L., Fornasari, M. E., Gatti, M., Lazzi, C., Neviani, E. and Giraffa, G. 2008. Grana Padano cheese whey starters: microbial composition and strain distribution. Int. J. Food Microbiol. 127:168-171. https://doi.org/10.1016/j.ijfoodmicro.2008.06.005
  57. Roy, D., Sirois, S. and Vincent, D. 2001. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis. Curr. Microbiol. 42:282-289.
  58. Rudi, K., Naterstad, K., Dromtorp, S. M. and Holo, H. 2005. Detection of viable and dead Listeria monocytogenes on gouda-like cheese by real-time PCR. Lett. Appl. Microbiol. 40:301-306. https://doi.org/10.1111/j.1472-765X.2005.01672.x
  59. Santarelli, M., Gatti, M., Lazzi, C., Bernini, V., Zapparoli, G. A. and Neviani, E. 2008. Whey starter for Grana Padano cheese: effect of technological parameters on viability and composition of the microbial community. J. Dairy Sci. 91:883-891. https://doi.org/10.3168/jds.2007-0296
  60. Schaad, N. W., Cheong, S. S., Tamaki, S., Hatziloukas, E. and Panapoulos, N. J. 1995. A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola inbeen seed extracts. Phytopathology 85:243-248. https://doi.org/10.1094/Phyto-85-243
  61. Settanni, L. and Moschetti, G. 2010. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 27:691-697. https://doi.org/10.1016/j.fm.2010.05.023
  62. Solieri, L., Bianchi, A. and Giudici, P. 2012. Inventory of non starter lactic acid bacteria from ripened Parmigiano Reggiano cheese as assessed by a culture dependent multiphasic approach. Syst. Appl. Microbiol. 35:270-277. https://doi.org/10.1016/j.syapm.2012.04.002
  63. Suzuki, M., Rappe, M. S. and Giovannoni, S. J. 1998. Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl. Environ. Microbiol. 64:4522-4529.
  64. Tyler, K. D., Wang, G., Tyler, S. D. and Johnson, W. M. 1997. Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J. Clin. Microbiol. 35:339-346.
  65. Vasquez, A., Molin, G., Pettersson, B., Antonsson, M. and Ahrne, S. 2005. DNA-based classification and sequence heterogeneities in the 16S rRNA genes of Lactobacillus casei/paracasei and related species. Syst. Appl. Microbiol. 28:430-441. https://doi.org/10.1016/j.syapm.2005.02.011
  66. Xiao, W. and Oefner, P. J. 2001. Denaturing high-performance liquid chromatography: a review. Hum. Mutat. 17:439-474. https://doi.org/10.1002/humu.1130
  67. Yoshino, K., Nishigaki, K. and Husimi, Y. 1991. Temperature sweep gel electrophoresis: a simple method to detect point mutations. Nucleic Acids Res. 19:3153. https://doi.org/10.1093/nar/19.11.3153
  68. Zago, M., Bonvini, B., Carminati, D. and Giraffa, G. 2009. Detection and quantification of Enterococcus gilvusin cheese by real-time PCR. Syst. Appl. Microbiol. 32:514-521. https://doi.org/10.1016/j.syapm.2009.07.001
  69. Zago, M., Fornasari, M. E., Rossetti, L., Scano, L., Carminati, D. and Giraffa, G. 2007. Population dynamics of lactobacilli in Grana cheese. Ann. Microbiol. 57:349-353. https://doi.org/10.1007/BF03175072