• Title/Summary/Keyword: Microbial growth

Search Result 1,746, Processing Time 0.031 seconds

Fermentation Characteristics of Juice Pomace Feed by Horse Feces Microbes (말분변 미생물을 이용한 주스박 사료의 발효 특성)

  • Hwang, Won-Uk;Kim, Gyeom-Heon;Niu, Kai-Min;Lim, Joung-Ho;Woo, Jae-Hoon;Chae, Hyun-Seok;Park, Nam-Geon;Kim, Soo-Ki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.290-300
    • /
    • 2017
  • In vitro fermentation was conducted to figure out alternative fiber sources for horse feed. For the development of value-added products as a horse feed resource, the pomaces from apple, carrot, grape, and citrus were fermented under solid-state conditions in the presence of 60% soybean meal with 40% of each fruit pomace at 60% of moisture content. Lactobacillus plantarum SK3873, Lactobacillus plantarum SK3893, Weissella cibaria SK3880, and Bacillus subtilis SK3889 were isolated from the fermented fruit pomace by inoculation of horse feces. For the growth of Bacillus subtilis, Saccharomyces cerevisiae, and Lactobacillus plantarum, they were inoculated in 3-step order at 0, 12, and 24 h, respectively. The fruit pomace was fermented for 48 h at $35^{\circ}C$. The pH of the apple, carrot, grape, citrus and all mixed pomaces decreased from 5.45~6.25 to 4.40~4.77. Microbial growth was maintained at $10^8{\sim}10^9cfu/g$. After 12 and 24 h incubation, dry matter of carrot pomace were highest at 54.84 and 56.66%, respectively (P<0.05) and that of grape pomace was lower than others during fermentation (P<0.05). Dry matter was generally reduced by about 20%. NDF decreased gradually or maintained after 24 h, indicating the fiber degradation. Ash content tended to decrease during fermentation. After 48 hours fermentation, Bacillus, yeast and Lactobacillus showed an excellent growth by using juice by-products. These results suggest that fermented juice pomace has a potential as horse feedstuff with probiotics to maintain beneficial microflora in horse gut.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Fermentative Characteristics of Low-Sodium $Kimchi$ Prepared with Salt Replacement (대체염을 이용한 저 나트륨 김치의 발효 특성)

  • Yu, Kwang-Won;Hwang, Jong-Hyun
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.753-760
    • /
    • 2011
  • This study was carried out to investigate the effects of various kinds of commercial salts, including Hanju salt, Deep sea water salt, $Salicornia$ $herbacea$ salt, Guwoon salt, Bamboo salt and salt replacement for the reduction of Na concentration in $kimchi$. The fermentative characteristics of these salts were determined during the fermentation at $10^{\circ}C$. $kimchi$ using a salt replacement and with $Salicornia$ $herbacea$ salt showed slow changes in their pH values. The use of salt replacement showed the lowest level(0.97%) of the retardation of $kimchi$ fermentation. For the preparation of $kimchi$ that used a low Na, chemical and microbial changes were investigated during the fermentation of process, examining preparations with both table salt and a salt replacement(CS-17). The salinity level of $kimchi$ prepared with table salt(control) and the salt replacement (CS-17) were 2.17~2.5% and 1.72~1.99% during fermentation, respectively. The Na contents of $kimchi$ with CS-17(562.5 mg%) showed a lower level than that with table salt(879.0 mg%). The growth of Leuconostoc sp. was highest ($1.5{\times}10^8$ cfu/g) in $kimchi$ with CS-17 at 6 day-fermentation, but the highest level($2.3{\times}10^7$ cfu/g) in $kimchi$ with table salt was at 7dayfermentation. The cells of $Lactobacillus$ sp. in the $kimchi$ prepared with CS-17 and table salt increased to $3.0{\times}10^8$ cfu/g and $6.0{\times}10^7$ cfu/g at 8day-fermentation, respectively. It was concluded that the use of CS-17 could reduce Na levels in $kimchi$ and mitigate over-maturation.

Identification of Streptomyces scopuliridis KR-001 and Its Herbicidal Characteristics (Streptomyces scopuliridis KR-001의 분리 동정 및 잡초 방제효과)

  • Lee, Boyoung;Kim, Jae Deok;Kim, Young Sook;Ko, Young Kwan;Yon, Gyu Hwan;Kim, Chang-Jin;Koo, Suk Jin;Choi, Jung Sup
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 2013
  • With increasing environmental issues from synthetic chemical herbicides, microbe-originated herbicides could be a fascinating alternative in current agriculture. We isolated Streptomyces strains that produced herbicidal active metabolite(s) against a grass weed Digitaria sanguinalis. According to the result from 16S rDNA sequence comparison with the close strains, the best isolate (Code name MS-80673) was identified as Streptomyces scopuliridis KR-001. The closest type strain was Streptomyces scopuliridis RB72 which was previously reported as a bacteriocin producer. The optimal culture condition of S. scopuliridis KR-001 was $28^{\circ}C$, pH 7.0 and culture period 4 to7 days. Both of soil and foliar application of the crude culture broth concentrate was effective on several troublesome or noxious weed species such as a Sciyos angulatus in a greenhouse and field condition. Phytotoxic symptoms of the culture broth concentrate of S. scopuliridis KR-001 by foliar application were wilting and burndown of leaves, and stems followed by discoloration and finally plant death. In crops such as rice, wheat, barley, hot pepper and tomato, growth inhibition was observed. These results suggest that the new S. scopuliridis KR-001 strain producing herbicidal metabolites may be a new bio-herbicide candidate and/or may provide a new lead molecule for a more efficient herbicide.

Quality characteristics and functionalities of Korean and Japanese spring Baechu cabbages and the kimchi prepared with such cabbages (한국산 및 일본산 봄배추와 이를 이용하여 제조한 김치의 품질특성과 기능성)

  • Park, So-Eun;Bong, Yeon-Ju;Kim, Hee-Young;Park, Kun-Young
    • Food Science and Preservation
    • /
    • v.20 no.6
    • /
    • pp.854-862
    • /
    • 2013
  • We examined the quality characteristics and functionalities of Korean and Japanese spring Baechu cabbages and the kimchi prepared with them. To study the physiochemical properties of the cabbages and the kimchis, we measured their water content, pH, acidity, microbial counts, and springiness. On the third week of the kimchi fermentation at $5^{\circ}C$, their sensory properties and in vitro DPPH radical scavenging and anticancer activities using AGS human gastric cancer cells were determined. The Japanese Baechu contained 97.1% water, and the Korean Baechu, 92.4%. The comparison of the textures of the raw Baechu and the brined Baechu showed that the Korean Baechu had higher springiness scores than the Japanese Baechu. After four-week fermentation, the springiness score of the kimchi with Korean Baechu was 53.5%, significantly higher than the 41.4% of the kimchi with Japanese Baechu. The kimchi prepared with Korean Baechu had a low total bacterial count but higher Lactobacillus sp. and Leuconostoc sp. counts than the kimchi with Japanese Baechu. The kimchi prepared with Korean Baechu had the highest overall acceptability score in the sensory evaluation test. The DPPH radical scavenging activity of the kimchi with Korean Baechu was 83.2%, and that of the kimchi with Japanese Baechu, 46.1%. When the AGS human gastric cancer cells were treated with the kimchis, the kimchi prepared with Korean Baechu showed a 45% cancer cell growth inhibition rate, and the kimchi with Japanese Baechu, 26%, at 1 mg/mL of methanol extracts. At the 2 mg/mL concentration, the kimchis with Korean Baechu and Japanese Baechu showed 97% and 74% inhibition, respectively. The Korean Baechu showed better quality than the Japanese Baechu, and the kimchi prepared with the Korean Baechu showed better kimchi quality and functionality than the Japanese Baechu.

Evaluation of Useful Biological Activities of Hot-Water Extracts of Raw-Red Bean and Boiled-Red Bean (Phaseolus radiatus L.) (생팥 및 삶은 팥의 열수 추출물의 유용 생리활성 평가)

  • Jung, In-Chang;Lee, Ye-Seul;Kang, Dong-Kyoon;Sohn, Ho-Yong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.3
    • /
    • pp.451-459
    • /
    • 2015
  • Raw-red bean (RR) should be boiled in hot water, and only boiled-red bean (BR) has been used in the food industry. In the course of development of functional food using red- bean (Phaseolus radiatus L), hot- water extracts (HWEs) of RR and BR were prepared, respectively and their components and various biological activities were compared. The extraction yield at $100^{\circ}C$ of RR (16.2%) was higher than that of BR (14.8%), and contents of total polyphenols, total flavonoids and reducing sugars of HWE of RR were 2.5-fold, 2.1-fold and 1.5-fold higher than those of HWE of BR. In anti-oxidation activity assay, scavenging activities against DPPH anion and ABTS cation as well as reducing power of RR was higher than those of BR. The results suggest that the anti-oxidant compounds in red bean might be heat-liable or discarded during boiling in hot-water as a cooking drip. Unexpectedly, nitrite scavenging activity was stronger in HWE of BR than RR. In anti-microbial activity assay, HWE of RR ($500{\mu}g/disc$) showed growth inhibition activity against gram-positive bacteria, whereas HWE of BR did not show any activity against any tested bacteria and fungi. Assay of in-vitro anti-diabetes and anti-thrombosis activities, which were previously reported in ethanol extract of red-bean, revealed that HWEs of RR and BR did not show significant activities against ${\alpha}$-amylase, ${\alpha}$-glucosidase, thrombin, prothrombin, or blood coagulation factors. Our results suggest that the anti-oxidation, anti-diabetes and anti-thrombosis activities of HWEs of RR and BR were lower than those of ethanol extracts of red bean, and bioactive substances in RR were destroyed during boiling or discarded after boiling. Further research on suitable boiling and re-use of cooking drip of red bean is necessary.

Effect of Seasonal Distribution Temperature on Storability of Modified Atmosphere Packaged Baby Leaf Beet (계절별 수송 온도가 MA 포장한 어린잎 비트의 저장성에 미치는 영향)

  • Choi, In-Lee;Han, Su Jung;Kim, Ju Young;Ko, Young-Wook;Kim, Yongduk;Hwang, Myung-Keun;Yu, Wanggun;Kang, Ho-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • The effects of distribution temperature due to season all changes on quality and storability of baby leaf beet (Beta vulgaris L.) was examined in modified atmosphere (MA) packages. The beet leaf had been harvested at the 10 cm leaf length stage and packaged with an oxygen transmission rate (OTR) film of $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ and then held at 4 different distribution temperatures which were $-2^{\circ}C$, $4^{\circ}C$, $20^{\circ}C$, or $30^{\circ}C$ for 5 hrs and then stored for 18 days at $8^{\circ}C$. The loss of fresh weight of packged baby leaf beet was lowest at the $4^{\circ}C$ treatment, and below 0.6% in all distribution temperature treatments. The atmosphere composition in packages did not show any significant differences among treatments. The oxygen conc. was the highest at 18.0% after the $4^{\circ}C$ treatment, carbon dioxide conc. showed the maximum value of 4% at the $30^{\circ}C$ and $-2^{\circ}C$ treatments, and ethylene conc. was highest at the $10^{\circ}C$ treatment after 10 days in storage. The hardness was the highest at the $4^{\circ}C$ treatment on the final storage day. The $4^{\circ}C$ treatment showed the highest visual quality and the lowest off-odor and aerobic plate count. Therefore, it is necessary to establish a low-temperature distribution system which is controlled under $4^{\circ}C$, because the baby leaf beet's storability and microbial growth are effected even during a short time of 5 hrs during the distribution process.

Preservation of Strawberries and Cucumbers Packaged by Low density polyethylene film impregnated with antimicmbial agent, Scutellariae baicalensis extract (황금추출물을 함유한 항균성 포장필름을 이용한 딸기와 오이의 저장효과)

  • 정순경;조성환
    • Food Science and Preservation
    • /
    • v.9 no.3
    • /
    • pp.271-276
    • /
    • 2002
  • To develop a wrapping film, which suppresses the microbial decay through the storage and prolongs the selflife of fruits and vegetables, the antimicrobial packaging films were prepared and applied to the preservation of strtwberries and cucumbers. Low density polyethylene(LDPE) film of 50㎛ thickness was faricated with 1% of Scutellariae baicalensis extract. The LDPE film impregnated with Scutellariae baicalensis extract showed antimicrobial activity on the disk test against Bacillus cereus, Escherchia coli and Fusarium sp.. The antimicrobial film changed the color and light transmittance, but did not affect heat shrinkage, mechanical tensile strength and wattability. Strawberries and cucumbers were separately wrapped with packaging films in the state of closely-adhered packaging as well as modified atmosphere packaging(MAP). The wrapped strawberries and cucumbers were stored for 21 days at 5$\^{C}$ and for 40 days at l0$\^{C}$, respectively. For the packaged strawberries and cucumbers at 5$\^{C}$ and 10$\^{C}$, the LDPE film impregnated with Scutellariae baicalensis extract showed the reduced growth of total aerobic bacteria, molds and yeasts and did not give any negative effect on other quality attributes during storage in comparison with conttrol film without any additive.

Quality Characteristics of Korean Traditional Rice Wine with Glutinous Rice (찹쌀 첨가에 따른 전통발효주의 품질 특성)

  • Lee, Youngseung;Kim, Hanna;Eom, Taekil;Kim, Sung-Hwan;Choi, Geun Pyo;Kim, Misook;Yu, Sungryul;Jeong, Yoonhwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1829-1836
    • /
    • 2013
  • This study is carried out to investigate the physicochemical characteristics, microbial population, and sensory characteristics during fermentation of Korean traditional rice wine with addition of glutinous rice. The fed-batch fermentation of rice was performed by Nuruk and yeast for 10 days at $28^{\circ}C$ in a water bath. The four fermentation batches included 0, 10, 15 and 20% of glutinous rice based on the total rice contents. The growth of total viable cells, lactic acid bacteria (LAB), and yeasts were similar among the four batches during the fermentation period. The population for total viable cells and LAB were increased for the first 3 days, and decreased slowly until 10 days. The number of yeast cells was rapidly decreased after day 6, when the alcohol content reached about 15% for all the fermentation batches. Physicochemical characteristics, such as pH, total acidity, and reducing sugars, were not different with the increase of additional glutinous rice contents. The ethanol production was higher in Korean traditional rice wine from non-glutinous rice (17.1%) than ones from glutinous rice (15.8~16.7%). For the sensory evaluations, Korean traditional rice wine with 15% glutinous rice was highly preferred due to the highest sweetness.

Classification by Zooplankton Inhabit Character and Freshwater Microbial Food Web: Importance of Epiphytic Zooplankton as Energy Source for High-Level Predator (동물플랑크톤의 서식 특성에 따른 분류와 먹이망: 상위포식자의 에너지원으로서 부착성 동물플랑크톤의 중요성)

  • Choi, Jong-Yun;La, Geung-Hwan;Jeong, Kwang-Seuk;Kim, Seong-Ki;Chang, Kwang-Hyeon;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.444-452
    • /
    • 2012
  • We conducted a comprehensive monitoring for freshwater food web in a wetland system (Jangcheok Lake), from May to October, 2011. Monthly sampling for zooplankton, fish as well as organic matters, was implemented. In order to understand the food web structure and energy flow, we applied stable isotope analysis to the collected samples, based on ${\delta}^{13}C$ and ${\delta}^{15}N$ values of epiphytic particulate organic matter(EPOM) and particulate organic matter (POM), epiphytic and planktonic zooplankton, fish (Lepomis macrochirus). In the study site, epiphytic and planktonic zooplankton was 24 and 30 species, respectively, and coincidence species between epiphytic and planktonic zooplankton were 20 species. Epiphytic zooplankton were more abundant during the spring and early summer (May to July); however, planktonic zooplankton were more abundant during the autumn (September to October) season. Stable isotope analysis revealed that fish and epiphytic zooplankton had seasonal variations on their food sources. EPOM largely contributed epiphytic zooplankton in spring (May), but increasing contribution of POM in autumn (September) was detected. However, planktonic zooplankton depended on only POM in both seasons. Fish utilized both epiphytic and planktonic zooplankton, but small sized (1~3 cm), fish preferred epiphytic zooplankton, where as larger sized (4~7 cm) fish tended to consume planktonic zooplankton, and epiphytic zooplankton had important role in energy transfer. This pattern was clear when results of spring and autumn stable isotope analysis were compared. From the results of this study, we confirmed that wetlands ecosystem supported various epiphytic and planktonic zooplankton species, they depend on other food items, respectively. L. macrochirus also showed a difference of food source according to the body size, they depend on seasonal density change of zooplankton. In particular, epiphytic zooplankton was very important for growth and development of young fish in the spring.