DOI QR코드

DOI QR Code

Fermentation Characteristics of Juice Pomace Feed by Horse Feces Microbes

말분변 미생물을 이용한 주스박 사료의 발효 특성

  • Hwang, Won-Uk (Department of Animal Science and Technology, Konkuk University) ;
  • Kim, Gyeom-Heon (Department of Animal Science and Technology, Konkuk University) ;
  • Niu, Kai-Min (Department of Animal Science and Technology, Konkuk University) ;
  • Lim, Joung-Ho (Department of Animal Science and Technology, Konkuk University) ;
  • Woo, Jae-Hoon (National Institute of Animal Science, RDA) ;
  • Chae, Hyun-Seok (National Institute of Animal Science, RDA) ;
  • Park, Nam-Geon (National Institute of Animal Science, RDA) ;
  • Kim, Soo-Ki (Department of Animal Science and Technology, Konkuk University)
  • 황원욱 (건국대학교 동물자원과학과) ;
  • 김겸헌 (건국대학교 동물자원과학과) ;
  • 우개민 (건국대학교 동물자원과학과) ;
  • 임정호 (건국대학교 동물자원과학과) ;
  • 우제훈 (농촌진흥청 국립축산과학원 난지축산시험장) ;
  • 채현석 (농촌진흥청 국립축산과학원 난지축산시험장) ;
  • 박남건 (농촌진흥청 국립축산과학원 난지축산시험장) ;
  • 김수기 (건국대학교 동물자원과학과)
  • Received : 2017.06.20
  • Accepted : 2017.11.12
  • Published : 2017.12.31

Abstract

In vitro fermentation was conducted to figure out alternative fiber sources for horse feed. For the development of value-added products as a horse feed resource, the pomaces from apple, carrot, grape, and citrus were fermented under solid-state conditions in the presence of 60% soybean meal with 40% of each fruit pomace at 60% of moisture content. Lactobacillus plantarum SK3873, Lactobacillus plantarum SK3893, Weissella cibaria SK3880, and Bacillus subtilis SK3889 were isolated from the fermented fruit pomace by inoculation of horse feces. For the growth of Bacillus subtilis, Saccharomyces cerevisiae, and Lactobacillus plantarum, they were inoculated in 3-step order at 0, 12, and 24 h, respectively. The fruit pomace was fermented for 48 h at $35^{\circ}C$. The pH of the apple, carrot, grape, citrus and all mixed pomaces decreased from 5.45~6.25 to 4.40~4.77. Microbial growth was maintained at $10^8{\sim}10^9cfu/g$. After 12 and 24 h incubation, dry matter of carrot pomace were highest at 54.84 and 56.66%, respectively (P<0.05) and that of grape pomace was lower than others during fermentation (P<0.05). Dry matter was generally reduced by about 20%. NDF decreased gradually or maintained after 24 h, indicating the fiber degradation. Ash content tended to decrease during fermentation. After 48 hours fermentation, Bacillus, yeast and Lactobacillus showed an excellent growth by using juice by-products. These results suggest that fermented juice pomace has a potential as horse feedstuff with probiotics to maintain beneficial microflora in horse gut.

본 연구에서는 주스박에 토착하고 있는 미생물을 분리하고 이를 발효에 이용하여 사료적 가치를 평가하고자 하였다. 주스박과 대두박을 원료로 하여 바실러스, 효모 그리고 유산균을 혼합 접종하여 수분 60%에서 고체발효 후의 pH변화, 총 균수의 변화와 같은 발효특성과 원료의 시간대별 일반성분의 변화를 확인하고자 하였다. 사과박, 당근박, 포도박, 감귤박에서 발효에 이용하기 위한 토착균주들을 분리, 동정하였으며 분리균 중 Lactobacillus plantarum, Weissella cibaria 및 Bacillus subtilis를 선택하여 농산부산물 고체발효에 이용하였다. 발효 주스박의 원료로는 사과박, 당근박, 포도박, 감귤박과 각 박을 동일비율로 혼합한 혼합박을 이용하여 5개의 시험구를 구성하였다. 위의 박들을 대두박과 2:3의 비율로 혼합하였으며 수분은 60%로 하여 발효 출발점에 바실러스, 12시간대에 효모 그리고 24시간에 유산균을 단계적으로 접종하여 $35^{\circ}C$에서 총 48시간 동안 발효하였다. 발효에 의한 pH변화는 발효 전후에서 사과박, 당근박, 포도박, 감귤박 그리고 혼합박에서 각각 $6.25{\rightarrow}4.47$, $6.23{\rightarrow}4.41$, $6.12{\rightarrow}4.66$, $5.49{\rightarrow}4.56$ 그리고 $5.45{\rightarrow}4.40$로 낮아지는 변화를 보였다. 발효 시간에 따른 생균수를 조사한 결과 발효 최초 접종시 초기 균수인 $10^7$에 비해 12, 24 그리고 48시간 발효 후에 모든 처리구에서 $10^8{\sim}10^9$로 증식되면서 발효가 지속적으로 진행되어 선별한 균주와 단계별 균주의 접종조건이 주스박을 발효함에 있어 적합한 것으로 판단되었다. 발효 초기인 12시간까지 젖산의 생성이 급격히 진행되었으며 사과박, 당근박, 포도박, 감귤박 그리고 혼합박에서 각각 632.40, 726.74, 674.29, 647.39 그리고 748.77 mMol/g으로 생성되었다. 발효 시간에 따른 건물함량은 초기 건물함량인 60%에서 12, 24시간 발효 후 당근박의 건물함량이 각각 54.84%, 56.66%로 다른 처리구들보다 유의적으로 높은 값을 보였으며(p<0.05), 포도박은 45.3%, 44.15%로 낮은 건물량을 보였다(p<0.05). 전반적으로 건물함량은 원물의 20%정도가 감소되었으며, 발효 시간에 따라서는 크게 변하지 않았다. 발효 시간대별 NDF는 발효 12시간째 모든 주스박에서 많은 감소를 보였으며 24시간부터 서서히 감소 또는 유지를 하였으며, 24시간대에는 포도박과 사과박이 가장 높은 경향을 보였다(p<0.10). ADF는 전반적으로 발효 시간에 따라 큰 변화를 보이지 않았으나, 사과박은 발효초기에 비해 12시간 때부터 급격히 감소하는 경향을 보였다 (p<0.10). 발효 시간에 따른 조회분은 쥬스박 별로 차이를 보이지 않았으나 (p<0.05), 전체적으로 감소되는 경향을 보였다. 주스박을 이용한 말용 사료를 개발하기 위해 사과박, 당근박, 포도박 그리고 말분변을 접종하였을 때 이들을 이용하는 우점 균주를 분리할 수 있었다. 이들 균주 중에서 발효에 유용하게 사용할 수 있는 바실러스와 유산균을 선별하였다. 바실러스, 효모 그리고 유산균을 3단계로 12시간 간격으로 각각 순서에 따라 접종하였다. 각 균주의 접종이후 12시간부터는 총 균수가 각각 $10^8$ 이상으로 유지하였다. 48시간 배양 후는 바실러스, 효모 그리고 유산균이 거의 균등하게 성장하였으며 이러한 주스박 발효물을 이용하여 말 사료로 이용하면 식품부산물을 사료자원으로 이용할 수 있을 뿐만 아니라 말을 위한 생균제의 급여로 말의 장내에서 유익한 균총의 유지에 도움이 될 수 있을 것으로 기대된다.

Keywords

References

  1. Alibes, X., Munoz, F. and Rodriguez, J. 1984. Feeding value of apple pomace silage for sheep. Animal Feed Science and Technology. 11:189-197 https://doi.org/10.1016/0377-8401(84)90062-2
  2. Alonso, J.L., Garrote, G., Dominguez, H., Santos, V. and Parajo, J.C. 2009. Lactic acid from apple pomace: A laboratory experiment for teaching valorisation of wastes. CyTA-Journal of Food. 7:83-88. https://doi.org/10.1080/11358120902906990
  3. Altmeyer, S., Kroger, S., Vahjen, W., Zentek, J. and Scharek-Tedin, L. 2014. Impact of a probiotic Bacillus cereus strain on the jejunal epithelial barrier and on the NKG2D expressing immune cells during the weaning phase of piglets. Veterinary Immunology and Immunopathology. 161:57-65. https://doi.org/10.1016/j.vetimm.2014.07.001
  4. Banka, A.L., Guralp, S.A. and Gulari, E. 2014. Secretory expression and characterization of two hemicellulases, xylanase, and ${\beta}$-xylosidase, isolated from Bacillus subtilis M015. Applied Biochemistry and Biotechnology. 174:2702-2710. https://doi.org/10.1007/s12010-014-1219-1
  5. Batista, N.N., Ramos, C.L., Ribeiro, D.D., Pinheiro, A.C.M. and Schwan, R.F. 2015. Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT-Food Science and Technology. 63:221-227. https://doi.org/10.1016/j.lwt.2015.03.051
  6. Bermudez-Humaran, L.G., Aubry, C., Motta, J.P., Deraison, C., Steidler, L., Vergnolle, N., Chatel, JM and Langella, P. 2013. Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology. 16:278-283. https://doi.org/10.1016/j.mib.2013.06.002
  7. Bonaterra, A., Badosa, E., Rezzonico, F., Duffy, B and Montesinos, E. 2014. Phenotypic comparison of clinical and plant-beneficial strains of Pantoea agglomerans. International Microbiology. 17:81-90.
  8. Chae, H.S., Kim, N.Y., Cho, I.C., Cho, S.R., Cho, W.M., Park, Y.S., Oh, S.A., Jang, A., Seong, P.N. and Ko, M.S. 2013. Effect of dietary supplementation of dried-citrus pulp and wheat bran on growth and meat quality in horses. Journal of Animal Science and Technology. 55:219-227. https://doi.org/10.5187/JAST.2013.55.3.219
  9. Chae, H.S., Kim, N.Y., Woo, J.H., Cho, I.C., Seong, P.N., Back, K.S., Park, S.H., Kim, J.H., Jang, A. and Park, N.G. 2015a. Effects of fattening period on nutritional composition and physico-chemical quality properties of Jeju-horses (Ι). Korean Journal for Food Science of Animal Resources. 25:123-130.
  10. Chae, H.S., Kim, N.Y., Woo, J.H., Cho, I.C., Seong, P.N., Back, K.S., Park, S.H., Kim, J.H., Jang, A. and Park, N.G. 2015b. Effects of fattening period on nutritional composition and physico-chemical quality properties of Jeju-horses (II). Annals of Animal Resources Sciences. 26:56-66. https://doi.org/10.12718/AARS.2015.26.1.56
  11. Chi, C.H. and Cho, S.J. 2016. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT-Food Science and Technology. 68:619-625. https://doi.org/10.1016/j.lwt.2015.12.002
  12. Dawood, M.A., Koshio, S., Ishikawa, M. and Yokoyama, S. 2015. Interaction effects of dietary supplementation of heat-killed Lactobacillus plantarum and ${\beta}$-glucan on growth performance, digestibility and immune response of juvenile red sea bream, Pagrus major. Fish & Shellfish Immunology. 45:33-42. https://doi.org/10.1016/j.fsi.2015.01.033
  13. Giang, H.H., Viet, T.Q., Ogle, B. and Lindberg, J.E. 2010. Effects of different probiotic complexes of lactic acid bacteria on growth performance and gut environment of weaned piglets. Livestock Science. 133:182-184. https://doi.org/10.1016/j.livsci.2010.06.059
  14. Guo, G., Yuan, X., Li, L., Wen, A. and Shao, T. 2014. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau. Grassland science. 60:240-246. https://doi.org/10.1111/grs.12060
  15. Hasunuma, T., Ishii, J. and Kondo, A. 2015. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Current Opinion in Chemical biology. 29:1-9. https://doi.org/10.1016/j.cbpa.2015.06.004
  16. Hasunuma, T., Okazaki, F., Okai, N., Hara, K. Y., Ishii, J., and Kondo, A. 2013. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Bioresource technology. 135:513-522. https://doi.org/10.1016/j.biortech.2012.10.047
  17. Hervert-Hernandez, D., Pintado, C., Rotger, R. and Goni, I. 2009 Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. International Journal of Food Microbiology. 136:119-122. https://doi.org/10.1016/j.ijfoodmicro.2009.09.016
  18. Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R. and Chirakkal, H. 2013. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Science. 92:370-374. https://doi.org/10.3382/ps.2012-02528
  19. Joshi, V.K. and Sandhu, D.K. 1996. Preparation and evaluation of an animal feed byproduct produced by solid-state fermentation of apple pomace. Bioresource Technology. 56:251-255. https://doi.org/10.1016/0960-8524(96)00040-5
  20. Ju, K.E. and Oh, N.S. 2009. Effect of the mixed culture of Bacillus subtilis and Lactobacillus plantarum on the quality of Cheonggukjang. Korean Journal of Food Science and Technology. 41:399-404.
  21. Kajala, I., Shi, Q., Nyyssola, A., Maina, N.H., Hou, Y., Katina, K., Tenkanen, M. and Juvonen, R. 2015. Cloning and characterization of a Weissella confusa dextransucrase and its application in high fibre baking. PloS one. 10:e0116418. https://doi.org/10.1371/journal.pone.0116418
  22. Kang, M.S., Kim, B.G., Chung, J., Lee, H.C. and Oh, J.S. 2006. Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds. Journal of Clinical Periodontology. 33:226-232. https://doi.org/10.1111/j.1600-051X.2006.00893.x
  23. Khianngam, S., Pootaeng-on, Y., Techakriengkrai, T. and Tanasupawat, S. 2014. Screening and identification of cellulase producing bacteria isolated from oil palm meal. Journal of Applied Pharmaceutical Science. 4:90-96.
  24. Kim, D.Y., and Han, G.D. 2010. Effects of dietary pegmatite, precious stone and grape pomace extracts on the meat quality of pigs. Korean Journal for Food Science of Animal Resources. 30:252-260. https://doi.org/10.5851/kosfa.2010.30.2.252
  25. Kumar, N., Sarkar, B.C., Sharma, H. K. 2010. Development and characterization of extruded product of carrot pomace, rice flour and pulse powder. African Journal of Food Science. 4:703-717.
  26. Kun, S., Rezessy-Szabo, J.M., Nguyen, Q.D., Hoschke, A. 2008. Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry. 43:816-821. https://doi.org/10.1016/j.procbio.2008.03.008
  27. Kuo, H.W., Zeng, J.K., Wang, P.H. and Chen, W.C. 2015. A novel exo-glucanase explored from a Meyerozyma sp. fungal strain. Advances in Enzyme Research. 3:53. https://doi.org/10.4236/aer.2015.33006
  28. Lee, C., Kim, Y. and Lee, H.J. 2015. Dietary supplementation of citrus and fermented citrus by-product for Juvenile red seabream pagrus major at low water temperature. Korean Journal of Fisheries and Aquatic Sciences. 48:454-458. https://doi.org/10.5657/KFAS.2015.0454
  29. Lee, S.W., Ham, S.N., Shin, T.S., Kim, H.K., Yeon, I.J. and Kim, K.Y. 2009. Resource of food waste using indigenous bacteria isolated from soils. Journal of Korean Society of Environmental Engineers. 31:35-41.
  30. Lee, W.K., Ahn, S.B., Park, H.E., Lee, S.M., Kim, S.Y. and Shon, M.Y. 2013. Characteristics and immuno-modulatory effects of Weissella cibaria JW15 isolated from Kimchi, Korea traditional fermented food, for probiotic use. Journal of Biomedical Research. 14:206-211. https://doi.org/10.12729/jbr.2013.14.4.206
  31. Lopez, I., Lopez, R., Santamaria, P., Torres, C. and Ruiz-Larrea, F. 2015. Performance of malolactic fermentation by inoculation of selected Lactobacillus plantarum and Oenococcus oeni strains isolated from Rioja red wines. VITIS-Journal of Grapevine Research. 47:123.
  32. Manzano, A., Freitas, A.R., Esteves, S.N. and Novaes, N.J. 1999. Polpa de citros peletizada na alimentacao de equinos. Revista Brasileira de Zootecnia. 29:1327-1332.
  33. Ministry of Agriculture, Food and Rural Affairs. 2014. The revitalization plan of agri-food by-products for animal feed.
  34. Mozzi, F. and Vignolo, G.M. (Eds.). 2010. Biotechnology of lactic acid bacteria: novel applications. John Wiley & Sons.
  35. Nguyen, T.D.T., Kang, J.H. and Lee, M.S. 2007. Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. International Journal of Food Microbiology. 113:358-361. https://doi.org/10.1016/j.ijfoodmicro.2006.08.015
  36. Niu, K.M. 2015. In vitro biological evaluation of probiotic L. pantarum SK1305 under submerged liquid and solid state fermentation. Thesis. Seoul. Korea.
  37. Oh, W.Y., Kim, D.C., Jin, S.H., Jung, J.H., Kang, T.H., Hong, S.K. and Yang, S.J. 1993. Effect of feeding method on growth performance and carcass characteristics of Cheju native horses. Korean Journal of Animal Sciences (Korea Republic).
  38. Oliveira, C.A.D.A., Almeida, F.Q., Vieira, A.A., Lana, A.M.Q., Macedo, R., Lopes, B.A. and Corassa, A. 2003. Kinetics of passage of digesta and water and nitrogen balance in horses fed diets with different ratios of roughage and concentrate. Revista Brasileira de Zootecnia. 32:140-149. https://doi.org/10.1590/S1516-35982003000100018
  39. Park, D.Y., Ahn, Y.T., Park, S.H., Huh, C.S., Yoo, S.R., Yu,R. and Choi, M.S. 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One. 8:e59470. https://doi.org/10.1371/journal.pone.0059470
  40. Park, S.Y. and Yoon, K.Y. 2015. Production of enzymatic hydrolysate including Water-soluble Fiber from hemicellulose fraction of chinese cabbage waste. Korean Journal of Food Science and Technology. 47:6-12 https://doi.org/10.9721/KJFST.2015.47.1.6
  41. Rahmat, H., Hodge, R.A., Manderson, G.J. and Yu, P.L. 1995. Solid-substrate fermentation of Kloeckera apiculata! and Candida utilis on apple pomace to produce an improved stock-feed. World Journal of Microbiology and Biotechnology. 11:168-170. https://doi.org/10.1007/BF00704641
  42. Rodriguez, L.A., Toro, M.E., Vazquez, F., Correa-Daneri, M.L., Gouiric, S.C. and Vallejo, M.D. 2010. Bioethanol production from grape and sugar beet pomaces by solid-state fermentation. International Journal of Hydrogen Energy. 35:5914-5917. https://doi.org/10.1016/j.ijhydene.2009.12.112
  43. Safari, R., Adel, M., Lazado, C.C., Caipang, C.M.A. and Dadar, M. 2016. Host-derived probiotics Enterococcus casseliflavus improves resistance against Streptococcus iniae infection in rainbow trout (Oncorhynchus mykiss) via immunomodulation. Fish & Shellfish Immunology. 52:198-205. https://doi.org/10.1016/j.fsi.2016.03.020
  44. SAS. 2003. Statistical Analysis System, Version 9.1 USA.
  45. Sharma, K.D., Karki, S., Thakur, N.S. and Attri, S. 2012. Chemical composition, functional properties and processing of carrot-a review. Journal of food science and technology. 49:22-32. https://doi.org/10.1007/s13197-011-0310-7
  46. Silva, R.H.P., de Rezende, A.S.C. and da Silva Inacio, D.F. 2016. Pectin-rich by-products in feeding horses-A review. Cogent Food & Agriculture. 2:1193925.
  47. Soccol, C.R., da Costa, E.S.F., Letti, L.A.J., Karp, S.G., Woiciechowski, A.L. and de Souza Vandenberghe, L.P. 2017. Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation.
  48. Sudha, M.L., Baskaran, V. and Leelavathi, K. 2007. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry. 104:686-692. https://doi.org/10.1016/j.foodchem.2006.12.016
  49. Sun, H., Ge, X., Hao, Z. and Peng, M. 2010. Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. African Journal of Biotechnology. 9:163-166.
  50. Tash, K. 2005. Rahnella aquatilis bacteremia from a suspected urinary source. Journal of Clinical Microbiology. 43:2526-2528. https://doi.org/10.1128/JCM.43.5.2526-2528.2005
  51. Walde, S.G., Math, R.G., Chakkravarthi, A. and Rao, D.G. 1992. Preservation of carrots (Daucus carota L.) By dehydration techniques. Indian Food Packer. 46:37-37.
  52. Yoon, K.Y., Woodams, E.E. and Hang, Y.D. 2004. Probiotication of tomato juice by lactic acid bacteria. Journal of microbiology (Seoul, Korea), 42:315-318.
  53. Yu, J. and Ahmedna, M. 2013. Functional components of grape pomace: their composition, biological properties and potential applications. International Journal of Food Science & Technology. 48:221-237. https://doi.org/10.1111/j.1365-2621.2012.03197.x
  54. Zhang, S., Shi, Y., Zhang, S., Shang, W., Gao, X. and Wang, H. 2014. Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food control. 41:1-6. https://doi.org/10.1016/j.foodcont.2013.12.026