• Title/Summary/Keyword: Microbial ecosystem

Search Result 152, Processing Time 0.023 seconds

Analysis of Microbial Community Structure in River Ecosystem Using Quinone Profiles (Quinone profile를 이용한 하천생태계의 미생물군집구조 해석)

  • Lim, Byung-Ran;Lee, Kisay;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.685-690
    • /
    • 2006
  • The differences in microbial community structures between planktonic microorganism and biofilm in rivers were investigated using respiratory quinone profiles. The compositions of microbial quinone for 4 tributaries of the Kyongan Stream located in/flowing through Yongin City, Gyeonggi-Do were analyzed. Ubiquinone(UQ)-8, UQ-9, menaquinone(MK)-6 and Plastoquinone(PQ)-9 were observed in all samples of planktonic microorganism and biofilm for the sites investigated, Most planktonic microorganism and biofilm had UQ-8(15 to 30%) and PQ-9(over 30%) as the dominant quinone type. These results indicated that oxygenic phototrophic microbes(cyanobacteria and/or eukaryotic phytoplankton) and UQ-8 containing proteobacteria constituted major microbial populations in the river. The quinone concentration in the river waters tested, which reflects the concentration of planktonic microorganisms, increases with increasing DOC. Further research into this is required. The microbial diversities of planktonic microorganism and biofilm calculated based on the composition of all quinones were in the range from 4.2 to 7.5, which was lower than those for activated sludge(ranging from 11 to 14.8) and soils(ranging from 13.4 to 16.8). The use of quinone profile appears to be a useful tool for the analysis of microbial community structure in river.

Seasonal Change of Sediment Microbial Communities and Methane Emission in Young and Old Mangrove Forests in Xuan Thuy National Park

  • Cuong Tu Ho;Unno Tatsuya;Son Giang Nguyen;Thi-Hanh Nguyen;Son Truong Dinh;Son Tho Le;Thi-Minh-Hanh Pham
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.580-588
    • /
    • 2024
  • Microbial communities in mangrove forests have recently been intensively investigated to explain the ecosystem function of mangroves. In this study, the soil microbial communities under young (<11 years-old) and old (>17 years-old) mangroves have been studied during dry and wet seasons. In addition, biogeochemical properties of sediments and methane emission from the two different mangrove ages were measured. The results showed that young and old mangrove soil microbial communities were significantly different on both seasons. Seasons seem to affect microbial communities more than the mangrove age does. Proteobacteria and Chloroflexi were two top abundant phyla showing >15%. Physio-chemical properties of sediment samples showed no significant difference between mangrove ages, seasons, nor depth levels, except for TOC showing significant difference between the two seasons. The methane emission rates from the mangroves varied depending on seasons and ages of the mangrove. However, this did not show significant correlation with the microbial community shifts, suggesting that abundance of methanogens was not the driving factor for mangrove soil microbial communities.

Evaluation of Air Pollution Effects in Seoul City on Forest Soil at Mt. Namsan by Assay of Denitrifying and Sulfur-Reducing Bacteria (탈질균(脫窒菌) 및 황산환원균(黃酸還元菌) 정량(定量)을 통(通)한 서울의 대기오염(大氣汚染)이 남산(南山)의 토양(土壤)에 미치는 영향(影響) 평가(評價))

  • Park, Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.98-104
    • /
    • 1997
  • Soil pollution intensity at Mt. Namsan in Seoul city which was expected to show significant soil contamination due to long-term air pollution was evaluated by comparing soil chemical properties at Mt. Kyebangsan in Hongcheon area as a control, and the bacteria participating in nitrogen or sulfur mineralization were assayed simultaneously in order to evaluate the validity of N and/or S mineralization bacteria as an index of soil contamination. The soil of Mt. Namsan showed 10 times higher concentration of hydrogen ion compared to that of Mt. Kyebangsan, which indicated that the soil had relatively been acidified seriously. Especially, large amount of canons were thought to be leached out from the soil, while the amount of extractable Al was getting larger and larger, which result in serious problems in soil ecosystem of the mountain. I could infer from soil chemical properties of the four study sites that the major reason of soil acidification was SOx deposition. However, the sulfur-reducing bacteria were not significantly different between the two regions, which indicated that the microbial dynamics of the soil ecosystem was not controlled by simple factor, but by multiple factors. By the way, the dynamics of bacteria participating in denitrification process was different between the two regions, which was more active at Mt. Kyebangsan than at Mt. Namsan. Thus, the microbial assay for nitrogen mineralization is desirable to be examined as a tool for evaluating soil health or microbial activity in soil ecosystem.

  • PDF

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Mucin modifies microbial composition and improves metabolic functional potential of a synthetic gut microbial ecosystem

  • Mabwi, Humphrey A.;Komba, Erick V.G.;Mwaikono, Kilaza Samson;Hitayezu, Emmanuel;Mauliasari, Intan Rizki;Jin, Jong Beom;Pan, Cheol-Ho;Cha, Kwang Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • Microbial dysbiosis in the gut is associated with human diseases, and variations in mucus alter gut microbiota. Therefore, we explored the effects of mucin on the gut microbiota using a community of 19 synthetic gut microbial species. Cultivation of these species in modified Gifu anaerobic medium (GAM) supplemented with mucin before synthetic community assembly facilitated substantial growth of the Bacteroides, Akkermansia, and Clostridium genera. The results of 16S rRNA microbial relative abundance profiling revealed more of the beneficial microbes Collinsella, Bifidobacterium, Ruminococcus, and Lactobacillus. This increased acetate levels in the community cultivated with, rather than without (control), mucin. We identified differences in predicted cell function and metabolism between microbes cultivated in GAM with and without mucin. Mucin not only changed the composition of the gut microbial community, but also modulated metabolic functions, indicating that it could help to modulate microbial changes associated with human diseases.

Impact of Herbicide Oxadiazon on Microbial Activity and Nitrogen Dynamics in Soil Environment

  • Rahman, Md. Mokhlesur;Song, Kyung-Sik;Rhee, In-Koo;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.187-192
    • /
    • 2005
  • Influence of herbicide oxadiazon on soil microbial activity and nitrogen dynamics was evaluated. Soil samples were treated with oxadiazon at field and tenfold field rates and incubated. Organic amendment was added as an additional substrate for soil microorganisms. Tenfold field rate oxadiazon stimulated substrate-induced respiration (SIR) and dehydrogenase activity (DHA) in amended soil as compared to unamended soil and control treatment. Soil urease activity was not affected by oxadiazon treatment. In both amended and unamended soils, treatment of the herbicide at higher rate had not significant influence on $NH_4$-N and $NO_3$-N concentrations. Higher dose of oxadiazon was degraded in both soils, but dissipation rate in amended soil was higher than unamended soil, with half-lives ($t_{1/2}$) of 23.1 and 138.6 days, respectively. Recommended field rate did not affect microbial activity and nitrogen dynamics in soil ecosystem. Results showed influence of oxadiazon on cycling processes of nitrogen in soil was not significant however its effect on microbial activity was a tendency depending on addition of organic amendment to soil.

The Response of Nitrogen Deposition to Methane Oxidation Availability and Microbial Enzyme Activities in Forest Soils

  • Jang, In-Young;Lee, Hyoung-Min;Kang, Ho-Jeong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.157-161
    • /
    • 2010
  • Forest soils are often nitrogen-limited, and nitrogen input to forest soils can cause substantial changes in the structure and functions of a soil ecosystem. To determine the effects of nitrogen input on methane oxidation and the microbial enzyme activities, manipulation experiments were conducted using nitrogen addition to soil samples from Mt. Jumbong. Our findings suggested that the addition of nitrogen to the soil system of Mt. Jumbong did not affect the microbial enzyme activities. Conversely, the addition of nitrogen affected the rate of methane oxidation. Inorganic nitrogen in soils can inhibit methane oxidation via several mechanisms, such as substrate competition, toxic effects, and competition with other microbes, but the inhibitory effects are not always the same. In this research, seasonal changes were found to produce different inhibitory factors, and these different responses may be caused from differences in the methantrophic bacteria community structure.

Control of Rumen Microbial Fermentation for Mitigating Methane Emissions from the Rumen

  • Mitsumori, Makoto;Sun, Weibin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.1
    • /
    • pp.144-154
    • /
    • 2008
  • The rumen microbial ecosystem produces methane as a result of anaerobic fermentation. Methanogenesis in the rumen is thought to represent a 2-12% loss of energy intake and is estimated to be about 15% of total atmospheric methane emissions. While methanogenesis in the rumen is conducted by methanogens, PCR-based techniques have recently detected many uncultured methanogens which have a broader phylogenetic range than cultured strains isolated from the rumen. Strategies for reduction of methane emissions from the rumen have been proposed. These include 1) control of components in feed, 2) application of feed additives and 3) biological control of rumen fermentation. In any case, although it could be possible that repression of hydrogen-producing reactions leads to abatement of methane production, repression of hydrogen-producing reactions means repression of the activity of rumen fermentation and leads to restrained digestibility of carbohydrates and suppression of microbial growth. Thus, in order to reduce the flow of hydrogen into methane production, hydrogen should be diverted into propionate production via lactate or fumarate.

Physicochemical Characteristics and Seasonal Distribution of Microbial Population in the Gangjin Bay Ecosystem (강진만 생태계에서의 이화학적 특성과 미생물군집의 계절적 분포)

  • 김기성;이우범;주현수;이제철;조재위;전순배;이성우;바공천
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2000
  • To investigate the variations of physicochemical factors and microbial populations in seven stations at water region of Gangjin bay, nutritive salts, water temperature, transparency, suspended solid, salinity, COD, DO, pH, heterotrophic bacteria, fungi and fecal coliform were analysed four times from February to October, 1999. Total fecal coliform and heterotrophic bacterial population during investigation periods ranged 16.1~166.0 CFU/ml and $5.0{\times}10^3$~$13.1{\times}10^3$CFU/ml, respectively. Stational mean values of these bacterial population showed higher densities at the inlet of fresh water inflow than those of other stations. When the aspects of abiotic and biotic parameters measured were analyzed, ecosystem of Gangjin bay was regulated by factors such as inflow of fresh water, nutrient salts, salinity and variation of water temperature during four seasons.

  • PDF

Dietary Transformation of Lipid in the Rumen Microbial Ecosystem

  • Kim, Eun Joong;Huws, Sharon A.;Lee, Michael R.F.;Scollan, Nigel D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1341-1350
    • /
    • 2009
  • Dietary lipids are rapidly hydrolysed and biohydrogenated in the rumen resulting in meat and milk characterised by a high content of saturated fatty acids and low polyunsaturated fatty acids (PUFA), which contributes to increases in the risk of diseases including cardiovascular disease and cancer. There has been considerable interest in altering the fatty acid composition of ruminant products with the overall aim of improving the long-term health of consumers. Metabolism of dietary lipids in the rumen (lipolysis and biohydrogenation) is a major critical control point in determining the fatty acid composition of ruminant lipids. Our understanding of the pathways involved and metabolically important intermediates has advanced considerably in recent years. Advances in molecular microbial technology based on 16S rRNA genes have helped to further advance our knowledge of the key organisms responsible for ruminal lipid transformation. Attention has focused on ruminal biohydrogenation of lipids in forages, plant oils and oilseeds, fish oil, marine algae and fat supplements as important dietary strategies which impact on fatty acid composition of ruminant lipids. Forages, such as grass and legumes, are rich in omega-3 PUFA and are a useful natural strategy in improving nutritional value of ruminant products. Specifically this review targets two key areas in relation to forages: i) what is the fate of the lipid-rich plant chloroplast in the rumen and ii) the role of the enzyme polyphenol oxidase in red clover as a natural plant-based protection mechanism of dietary lipids in the rumen. The review also addresses major pathways and micro-organisms involved in lipolysis and biohydrogenation.