• Title/Summary/Keyword: Microbial Pathogenesis

Search Result 54, Processing Time 0.015 seconds

Antimicrobial and Antioxidant Activities and Inhibition of Nitric Oxide Synthesis of Oak Wood Vinegar (참나무 목초액의 항균 및 항산화 활성과 일산화질소 합성 저해연구)

  • Jung, Il-Sun;Kim, Yu-Jung;Gal, Sang-Wan;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.105-109
    • /
    • 2007
  • This study was carried out to investigate the biological effects oak wood vinegar. Antimicrobial activity was tested in five microbial species at the concentration of 5 to $50{\mu}l$ of oak wood vinegar by paper disc method. Growth of P. oleovoranse, P. vulgaris, E. coli, S. aureus and Prevotella intermedia was inhibited at a dose of as low as $50{\mu}l$ of oak wood vinegar. Antioxidant activities were measured by using DPPH radical scavenging and SOD-like activity. DPPH radical scavenging and SOD-like activities were 90% and 65% at the concentration of $25{\mu}l\;and\;50{\mu}l$ of oak wood vinegar, respectively. Stimulation of the macrophages RAW264.7 cells with lipopolysaccharide (LPS) resulted in increased production of nitric oxide (NO) in the medium. However, the oak wood vinegar showed marked inhibition of NO synthesis in a dose-dependent manner. This result suggest that oak wood vinegar plays significant role for activation of immune system in the pathogenesis of inflammatory diseases.

NLRP3 Inflammasome in Neuroinflammatory Disorders (NLRP3 인플라마좀 작용 기전 및 신경 질환에서의 역할)

  • Kim, Ji-Hee;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.237-247
    • /
    • 2021
  • Immune responses in the central nervous system (CNS) function as the host's defense system against pathogens and usually help with repair and regeneration. However, chronic and exaggerated neuroinflammation is detrimental and may create neuronal damage in many cases. The NOD-, LRR-, and pyrin domain―containing 3 (NLRP3) inflammasome, a kind of NOD-like receptor, is a cytosolic multiprotein complex that consists of sensors (NLRP3), adaptors (apoptosis-associated speck like protein containing a caspase recruitment domain, ASC) and effectors (caspase 1). It can detect a broad range of microbial pathogens along with foreign and host-derived danger signals, resulting in the assembly and activation of the NLRP3 inflammasome. Upon activation, NLRP3 inflammasome leads to caspase 1-dependent secretion of the pro-inflammatory cytokines IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. NLRP3 inflammasome is highly expressed in CNS-resident cell types, including microglia and astrocytes, and growing evidence suggests that NLRP3 inflammasome is a crucial player in the pathophysiology of several neuroinflammatory and psychiatric diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, traumatic brain injury, amyotrophic lateral sclerosis, and major depressive disorder. Thus, this review describes the molecular mechanisms of NLRP3 inflammasome activation and its crucial roles in the pathogenesis of neurological disorders.

Extracellular RNAs and Extracellular Vesicles: Inception, Current Explorations, and Future Applications

  • Perumal, Ayyappasamy Sudalaiyadum;Chelliah, Ramachandran;Datta, Saptashwa;Krishna, Jayachandran;Samuel, Melvin S.;Ethiraj, Selvarajan;Park, Chae Rin
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.535-543
    • /
    • 2020
  • In addition to the ubiquitous roles of cellular RNA in genetic regulations, gene expression and phenotypic variations in response to environmental cues and chemotactic signals, the regulatory roles of a new type of RNA called extracellular RNAs (exRNAs) are an up-and-coming area of research interest. exRNA is transported outside the cell through membrane blebs known as membrane vesicles or extracellular vesicles (EVs). EV formation is predominant and conserved among all microbial forms, including prokaryotes, eukaryotes, and archaea. This review will focus on the three major topics concerning bacterially derived exRNAs, i.e., 1) the discovery of exRNA and influence of extraneous RNA over bacterial gene regulations, 2) the known secretion mechanism for the release of exRNA, and 3) the possible applications that can be devised with these exRNA secreted by different gram-negative and gram-positive bacteria. Further, this review will also provide an opinion on exRNA- and EV-derived applications such as the species-specific exRNA markers for diagnostics and the possible roles of exRNA in probiotics and the epigenetic regulations of the gut microbiome.

A Multicenter Study to Identify the Respiratory Pathogens Associated with Exacerbation of Chronic Obstructive Pulmonary Disease in Korea

  • Lee, Hyun Woo;Sim, Yun Su;Jung, Ji Ye;Seo, Hyewon;Park, Jeong-Woong;Min, Kyung Hoon;Lee, Jae Ha;Kim, Byung-Keun;Lee, Myung Goo;Oh, Yeon-Mok;Ra, Seung Won;Kim, Tae-Hyung;Hwang, Yong Il;Rhee, Chin Kook;Joo, Hyonsoo;Lee, Eung Gu;Lee, Jin Hwa;Park, Hye Yun;Kim, Woo Jin;Um, Soo-Jung;Choi, Joon Young;Lee, Chang-Hoon;An, Tai Joon;Park, Yeonhee;Yoon, Young-Soon;Park, Joo Hun;Yoo, Kwang Ha;Kim, Deog Kyeom
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.1
    • /
    • pp.37-46
    • /
    • 2022
  • Background: Although respiratory tract infection is one of the most important factors triggering acute exacerbation of chronic obstructive pulmonary disease (AE-COPD), limited data are available to suggest an epidemiologic pattern of microbiology in South Korea. Methods: A multicenter observational study was conducted between January 2015 and December 2018 across 28 hospitals in South Korea. Adult patients with moderate-to-severe acute exacerbations of COPD were eligible to participate in the present study. The participants underwent all conventional tests to identify etiology of microbial pathogenesis. The primary outcome was the percentage of different microbiological pathogens causing AE-COPD. A comparative microbiological analysis of the patients with overlapping asthma-COPD (ACO) and pure COPD was performed. Results: We included 1,186 patients with AE-COPD. Patients with pure COPD constituted 87.9% and those with ACO accounted for 12.1%. Nearly half of the patients used an inhaled corticosteroid-containing regimen and one-fifth used systemic corticosteroids. Respiratory pathogens were found in 55.3% of all such patients. Bacteria and viruses were detected in 33% and 33.2%, respectively. Bacterial and viral coinfections were found in 10.9%. The most frequently detected bacteria were Pseudomonas aeruginosa (9.8%), and the most frequently detected virus was influenza A (10.4%). Multiple bacterial infections were more likely to appear in ACO than in pure COPD (8.3% vs. 3.6%, p=0.016). Conclusion: Distinct microbiological patterns were identified in patients with moderate-to-severe AE-COPD in South Korea. These findings may improve evidence-based management of patients with AE-COPD and represent the basis for further studies investigating infectious pathogens in patients with COPD.