• 제목/요약/키워드: Microbial Community

Search Result 768, Processing Time 0.02 seconds

Changes in Microbial Diversity, Methanogenesis and Fermentation Characteristics in the Rumen in Response to Medicinal Plant Extracts

  • Kim, Eun Tae;Moon, Yea Hwang;Min, Kwan-Sik;Kim, Chang-Hyun;Kim, Sam Churl;Ahn, Seung Kyu;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1289-1294
    • /
    • 2013
  • This study evaluated the in vitro effect of medicinal plant extracts on ruminal methanogenesis, four different groups of methanogens and ruminal fermentation characteristics. A fistulated Holstein cow was used as a donor of rumen fluid. Licorice and mugwort extracts (Glycyrrhiza uralensis and Artemisia capillaris, 0.5% and 1% of total substrate DM, respectively), previously used as folk remedies, were added to an in vitro fermentation incubated with buffered-rumen fluid. Total gas production in Glycyrrhiza uralensis extract treatment was not significantly different between treatments (p<0.05) while total gas production in the Artemisia capillaris extract treatment was lower than that of the control. Artemisia capillaris extract and Glycyrrhiza uralensis extract reduced $CH_4$ emission by 14% (p<0.05) and 8% (p<0.05), respectively. Ciliate-associated methanogens population decreased by 18% in the medicinal plant extracts treatments. Medicinal plant extracts also affected the order Methanobacteriales community. Methanobacteriales diversity decreased by 35% in the Glycyrrhiza uralensis extract treatment and 30% in the Artemisia capillaris extract treatment. The order Methanomicrobiales population decreased by 50% in the 0.5% of Glycyrrhiza uralensis extract treatment. These findings demonstrate that medicinal plant extracts have the potential to inhibit in vitro ruminal methanogenesis.

Enhanced Production of Human Serum Albumin by Fed-Batch Culture of Hansenula polymorpha with High-Purity Oxygen

  • Youn, Jong-Kyu;Shang, Longan;Kim, Moon-Il;Jeong, Chang-Moon;Chang, Ho-Nam;Hahm, Moon-Sun;Rhee, Sang-Ki;Kang, Hyun-Ah
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1534-1538
    • /
    • 2010
  • Fed-batch cultures of Hansenula polymorpha were studied to develop an efficient biosystem to produce recombinant human serum albumin (HSA). To comply with this purpose, we used a high-purity oxygen-supplying strategy to increase the viable cell density in a bioreactor and enhance the production of target protein. A mutant strain, H. polymorpha GOT7, was utilized in this study as a host strain in both 5-l and 30-l scale fermentors. To supply high-purity oxygen into a bioreactor, nearly 100% high-purity oxygen from a commercial bomb or higher than 93% oxygen available in situ from a pressure swing adsorption (PSA) oxygen generator was employed. Under the optimal fermentation of H. polymorpha with highpurity oxygen, the final cell densities and produced HSA concentrations were 24.6 g/l and 5.1 g/l in the 5-l fermentor, and 24.8 g/l and 4.5 g/l in the 30-l fermentor, respectively. These were about 2-10 times higher than those obtained in air-based fed-batch fermentations. The discrepancies between the 5-l and 30-l fermentors with air supply were presumably due to the higher contribution of surface aeration over submerged aeration in the 5-l fermentor. This study, therefore, proved the positive effect of high-purity oxygen in enhancing viable cell density as well as target recombinant protein production in microbial fermentations.

Arthrobacter sp. Strain KU001 Isolated from a Thai Soil Degrades Atrazine in the Presence of Inorganic Nitrogen Sources

  • Sajjaphan, Kannika;Heepngoen, Pimpak;Sadowsky, Michael J.;Boonkerd, Nantakorn
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.602-608
    • /
    • 2010
  • An atrazine-degrading bacterium, strain KU001, was obtained from a sugarcane field at the Cane and Sugar Research and Development Center at the Kasetsart University, Kamphaeng Saen Campus, Thailand. Strain KU001 had a rod-to-coccus morphological cycle during growth. Biolog carbon source analysis indicated that the isolated bacterium was Arthrobacter histidinolovorans. Sequence analysis of the PCR product indicated that the 16S rRNA gene in strain KU001 was 99% identical to the same region in Arthrobacter sp. The atrazine degradation pathway in strain KU001 consisted of the catabolic genes trzN, atzB, and atzC. Strain KU001 was able to use atrazine as a sole nitrogen source for growth, and surprisingly, atrazine degradation was not inhibited in cells grown on ammonium, nitrate, or urea, as compared with cells cultivated on growth-limiting nitrogen sources. During the atrazine degradation process, the supplementation of nitrate completely inhibited atrazine degradation activity in strain KU001, whereas ammonium and urea had no effect on atrazine degradation activity. The addition of strain KU001 to sterile or nonsterile soils resulted in the disappearance of atrazine at a rate that was 4- to 5-fold more than that achieved by the indigenous microbial community. The addition of citrate to soils resulted in enhanced atrazine degradation, where 80% of atrazine disappeared within one day following nutrient supplementation.

Next-generation Sequencing for Environmental Biology - Full-fledged Environmental Genomics around the Corner (차세대 유전체 기술과 환경생물학 - 환경유전체학 시대를 맞이하여)

  • Song, Ju Yeon;Kim, Byung Kwon;Kwon, Soon-Kyeong;Kwak, Min-Jung;Kim, Jihyun F.
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.77-89
    • /
    • 2012
  • With the advent of the genomics era powered by DNA sequencing technologies, life science is being transformed significantly and biological research and development have been accelerated. Environmental biology concerns the relationships among living organisms and their natural environment, which constitute the global biogeochemical cycle. As sustainability of the ecosystems depends on biodiversity, examining the structure and dynamics of the biotic constituents and fully grasping their genetic and metabolic capabilities are pivotal. The high-speed high-throughput next-generation sequencing can be applied to barcoding organisms either thriving or endangered and to decoding the whole genome information. Furthermore, diversity and the full gene complement of a microbial community can be elucidated and monitored through metagenomic approaches. With regard to human welfare, microbiomes of various human habitats such as gut, skin, mouth, stomach, and vagina, have been and are being scrutinized. To keep pace with the rapid increase of the sequencing capacity, various bioinformatic algorithms and software tools that even utilize supercomputers and cloud computing are being developed for processing and storage of massive data sets. Environmental genomics will be the major force in understanding the structure and function of ecosystems in nature as well as preserving, remediating, and bioprospecting them.

Characterization of the Biodiversity of the Spoilage Microbiota in Chicken Meat Using Next Generation Sequencing and Culture Dependent Approach

  • Lee, Hee Soo;Kwon, Mirae;Heo, Sunhak;Kim, Min Gon;Kim, Geun-Bae
    • Food Science of Animal Resources
    • /
    • v.37 no.4
    • /
    • pp.535-541
    • /
    • 2017
  • This study investigated the psychrotrophic bacteria isolated from chicken meat to characterize their microbial composition during refrigerated storage. The bacterial community was identified by the Illumina MiSeq method based on bacterial DNA extracted from spoiled chicken meat. Molecular identification of the isolated psychrotrophic bacteria was carried out using 16S rDNA sequencing and their putrefactive potential was investigated by the growth at low temperature as well as their proteolytic activities in chicken meat. From the Illumina sequencing, a total of 187,671 reads were obtained from 12 chicken samples. Regardless of the type of chicken meat (i.e., whole meat and chicken breast) and storage temperatures ($4^{\circ}C$ and $10^{\circ}C$), Pseudomonas weihenstephanensis and Pseudomonas congelans were the most prominent bacterial species. Serratia spp. and Acinetobacter spp. were prominent in chicken breast and whole chicken meat, respectively. The 118 isolated strains of psychrotrophic bacteria comprised Pseudomonas spp. (58.48%), Serratia spp. (10.17%), and Morganella spp. (6.78%). All isolates grew well at $10^{\circ}C$ and they induced different proteolytic activities depending on the species and strains. Parallel analysis of the next generation sequencing and culture dependent approach provides in-depth information on the biodiversity of the spoilage microbiota in chicken meat. Further study is needed to develop better preservation methods against these spoilage bacteria.

Analysis of Dominant Microorganisms of Bulking Sludge at Low Dissolved Oxygen Concentration using 16S rRNA Sequences (16S rRNA 염기서열을 이용한 낮은 용존산소농도에서 발생한 벌킹슬러지의 우점종 분석)

  • Kim, Yun-Jung;Park, Eun-Hye;Kim, Gyu-Dong;Nam, Kyoungphile;Chung, Tai Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.506-511
    • /
    • 2004
  • Maintaining dissolved oxygen (DO) at sufficiently low concentration in the aeration tank at a wastewater treatment plant (WWTP) is essential for reduction of the costs of operation and maintenance. On the other hand, the low DO level may result in adverse effect on the integrity of the activated sludge, A typical and disastrous outcome frequently experienced is the outgrowth of filamentous microorganisms, which is called as filamentous bulking, In addition to the traditional methods such as sludge settleability and microscopic observation of the culture, molecular techniques including polymerase chain reaction (PCR) amplification followed by 16S rRNA sequencing were applied to identify filamentous bacteria present in bulking sludge under a condition of low DO concentration, Two morphologically distinct groups, presumably consisting of Sphaerofilus nafans, and Eikelboom Type 1701 or Type 1851, were identified through microscopic observation. They were further confirmed by subsequent 16S rRNA sequencing. Dominant filamentous bacteria identified by the molecular techniques were consisted of three major groups. Sequences of partial 16S rRNA cloned showed that the filamentous bulking organisms were closely related to Eikelboom Type 021N and Eikelboom Type 1701, and Sphaerotilus natans, respectively. Molecular methods were found to possess a strong potential of direct examination of the microbial community of an activated sludge system.

Metaproteomic analysis of harmful algal bloom in the Daechung reservoir, Korea

  • Choi, Jong-Soon;Park, Yun Hwan;Kim, Soo Hyeon;Park, Ju Seong;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.424-432
    • /
    • 2020
  • The present study aimed to analyze the metaproteome of the microbial community comprising harmful algal bloom (HAB) in the Daechung reservoir, Korea. HAB samples located at GPS coordinates of 36°29'N latitude and 127°28'E longitude were harvested in October 2013. Microscopic observation of the HAB samples revealed red signals that were presumably caused by the autofluorescence of chlorophyll and phycocyanin in viable cyanobacteria. Metaproteomic analysis was performed by a gelbased shotgun proteomic method. Protein identification was conducted through a two-step analysis including a forward search strategy (FSS) (random search with the National Center for Biotechnology Information (NCBI), Cyanobase, and Phytozome), and a subsequent reverse search strategy (RSS) (additional Cyanobase search with a decoy database). The total number of proteins identified by the two-step analysis (FSS and RSS) was 1.8-fold higher than that by one-step analysis (FSS only). A total of 194 proteins were assigned to 12 cyanobacterial species (99 mol%) and one green algae species (1 mol%). Among the species identified, the toxic microcystin-producing Microcystis aeruginosa NIES-843 (62.3%) species was the most dominant. The largest functional category was proteins belonging to the energy category (39%), followed by metabolism (15%), and translation (12%). This study will be a good reference for monitoring ecological variations at the meta-protein level of aquatic microalgae for understanding HAB.

A Brief Review of Approaches Using Planktonic Organisms to Assess Marine Ecosystem Health (부유생물을 이용한 해양생태계 건강성 평가)

  • Kim, Young-Ok;Choi, Hyun-Woo;Jang, Min-Chul;Jang, Pung-Kuk;Lee, Won-Je;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • Plankton communities have close relationships with environmental changes in water columns. Thus, the use of plankton as a biological tool for assessing the marine ecosystem health may be effective. Major issue regarding coastal pollution has been usually recognized as phytoplankton blooms or red tides caused by the eutrophication, an increase in concentration of inorganic nutrients such as nitrogen and phosphorus. However, in order to understand the effects of the overall pollution on marine ecosystem, the organic pollutants as well as the inorganic nutrients should be also considered. For understanding the effects of the organic pollution, among the planktonic organisms, heterotrophic bacteria, heterotrophic flagellates and ciliates should be investigated. Generally, there are three approaches for assessing the marine ecosystem health using the plankton taxa or plankton communities. The first one is a community-based approach such as diversity index and chlorophyll a concentration which are common in analysis of the plankton communities. The second is an indiviual-based approach which is to monitor the pollution indicative species. This approach needs one's ability to identify the plankton to species level. The last approach is a bioassay of toxicity, which can be applied to the plankton. A pilot study in Masan Bay was conducted to assess the effects of the inorganic and organic pollution. In this article, a new approach using plankton communities was tentatively presented as a biological tool for assessing the ecosystem health of Masan Bay.

Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota

  • Unno, Tatsuya;Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.431-438
    • /
    • 2015
  • Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance.

Molecular Profiling of Rhizosphere Bacterial Communities Associated with Prosopis juliflora and Parthenium hysterophorus

  • Jothibasu, K.;Chinnadurai, C.;Sundaram, S.P.;Kumar, K.;Balachandar, D.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.301-310
    • /
    • 2012
  • Prosopis juliflora and Parthenium hysterophorus are the two arid, exotic weeds of India that are characterized by distinct, profuse growth even in nutritionally poor soils and environmentally stressed conditions. Owing to the exceptional growth nature of these two plants, they are believed to harbor some novel bacterial communities with wide adaptability in their rhizosphere. Hence, in the present study, the bacterial communities associated with the rhizosphere of Prosopis and Parthenium were characterized by clonal 16S rRNA gene sequence analysis. The culturable microbial counts in the rhizosphere of these two plants were higher than bulk soils, possibly influenced by the root exudates of these two plants. The phylogenetic analysis of V1_V2 domains of the 16S rRNA gene indicated a wider range of bacterial communities present in the rhizosphere of these two plants than in bulk soils and the predominant genera included Acidobacteria, Gammaproteobacteria, and Bacteriodetes in the rhizosphere of Prosopis, and Acidobacteria, Betaproteobacteria, and Nitrospirae in the Parthenium rhizosphere. The diversity of bacterial communities was more pronounced in the Parthenium rhizosphere than in the Prosopis rhizosphere. This culture-independent bacterial analysis offered extensive possibilities of unraveling novel microbes in the rhizospheres of Prosopis and Parthenium with genes for diverse functions, which could be exploited for nutrient transformation and stress tolerance in cultivated crops.