Browse > Article
http://dx.doi.org/10.4014/jmb.1408.08063

Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota  

Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Kim, Jungman (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Guevarra, Robin B. (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Nguyen, Son G. (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.4, 2015 , pp. 431-438 More about this Journal
Abstract
Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance.
Keywords
Gut microbiota; MiSeq; mothur; swine; antibiotics; growth promoter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Joy SR, Li X, Snow DD, Gilley JE, Woodbury B, BarteltHunt SL. 2014. Fate of antimicrobials and antimicrobial resistance genes in simulated swine manure storage. Sci. Total Environ. 481C: 69-74.   DOI   ScienceOn
2 Hoese A, Clay SA, Clay DE, Oswald J, Trooien T, Thaler R, Carlson CG. 2009. Chlortetracycline and tylosin runoff from soils treated with antimicrobial containing manure. J. Environ. Sci. Health B 44: 371-378.   DOI   ScienceOn
3 Holman DB, Chénier MR. 2013. Impact of subtherapeutic administration of tylosin and chlortetracycline on antimicrobial resistance in farrow-to-finish swine. FEMS Microbiol. Ecol. 85: 1-13.   DOI   ScienceOn
4 Jernberg C, Löfmark S, Edlund C, Jansson JK. 2010. Longterm impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156: 3216-3223.   DOI   ScienceOn
5 Kalmokoff M, Waddington LM, Thomas M, Liang K-L, Ma C, Topp E, et al. 2011. Continuous feeding of antimicrobial growth promoters to commercial swine during the growing/finishing phase does not modify faecal community erythromycin resistance or community structure. J. Appl. Microbiol. 110: 1414-1425.   DOI   ScienceOn
6 Kamada N, Kim YG, Sham HP, Vallance BA, Puente JL, Martens EC, Nunez G. 2012. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336: 1325-1329.   DOI
7 Karlsson F, Svartstrom O, Belak K, Fellstrom C, Pringle M. 2013. Occurrence of Treponema spp. in porcine skin ulcers and gingiva. Vet. Microbiol. 165: 402-409.   DOI   ScienceOn
8 Cornick NA. 2010. Tylosin and chlorotetracycline decrease the duration of fecal shedding of E. coli O157:H7 by swine. Vet. Microbiol. 143: 417-419.   DOI   ScienceOn
9 Casewell M, Friis C, Marco E, McMullin P, Phillips I. 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52: 159-161.   DOI   ScienceOn
10 Castillo M, Martín-Orúe SM, Roca M, Manzanilla EG, P Badiola I, erez JF, Gasa J. 2006. The response of gastrointestinal microbiota to avilamycin, butyrate, and plant extracts in early-weaned pigs. J. Anim. Sci. 84: 2725-2734.   DOI   ScienceOn
11 Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: D141-D145.   DOI   ScienceOn
12 Degnan PH, Ochman H. 2012. Illumina-based analysis of microbial community diversity. ISME J. 6: 183-194.   DOI
13 Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200.   DOI   ScienceOn
14 Flint HJ. 2012. Microbiology: antibiotics and adiposity. Nature 488: 601-602.   DOI   ScienceOn
15 Foster EK. 2003. METASTATS: behavioral science statistics for Microsoft Windows and the HP49G programmable calculator. Behav. Res. Methods Instrum. Comput. 35: 325-328.   DOI   ScienceOn
16 Foxx-Orenstein AE, Chey WD. 2012. Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders. Am. J. Gastroenterol. Suppl. 1: 41-46.   DOI
17 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108(Suppl 1): 4516-4522.   DOI   ScienceOn
18 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624.   DOI
19 Awad WA, Ghareeb K, Abdel-Raheem S, Bohm J. 2009. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 88: 49-56.   DOI   ScienceOn
20 Bhandari SK, Xu B, Nyachoti CM, Giesting DW, Krause DO. 2008. Evaluation of alternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhea: effects on gut microbial ecology. J. Anim. Sci. 86: 836-847.   DOI   ScienceOn
21 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031.   DOI   ScienceOn
22 Thompson CL, Wang B, Holmes AJ. 2008. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2: 739-748.   DOI   ScienceOn
23 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI   ScienceOn
24 Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. 2009. A core gut microbiome in obese and lean twins. Nature 457: 480-484.   DOI   ScienceOn
25 UpadrastaA, O’Sullivan L, O’Sullivan O, Sexton N, Lawlor PG, Hill C, et al. 2013. The effect of dietary supplementation with spent cider yeast on the swine distal gut microbiome. PLoS One 8: e75714.   DOI
26 Willing BP, Russell SL, Finlay BB. 2011. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9: 233-243.   DOI   ScienceOn
27 Pedersen R, Ingerslev H-C, Sturek M, Alloosh M, Cirera S, Christoffersen BØ, et al. 2013. Characterisation of gut microbiota in Ossabaw andGöttingen minipigs as models of obesity and metabolic syndrome. PLoS One 8: e56612.   DOI
28 Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30: 614-620.   DOI   ScienceOn
29 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and Web-based tools. Nucleic Acids Res. 41: D590-D596.   DOI
30 Norris V, Molina F, Gewirtz AT. 2013. Hypothesis: bacteria control host appetites. J. Bacteriol. 195: 411-416.   DOI   ScienceOn
31 Queipo-Ortuno MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, et al. 2013. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS One 8: e65465.   DOI
32 Redondo LM, Chacana PA, Dominguez JE, Fernandez Miyakawa ME. 2014. Perspectives in the use of tannins as alternative to antimicrobial growth promoter factors in poultry. Front. Microbiol. 5: 118.   DOI   ScienceOn
33 Rettedal E, Vilain S, Lindblom S, Lehnert K, Scofield C, George S, et al 2009. Alteration of the ileal microbiota of weanling piglets by the growth-promoting antibiotic chlortetracycline. Appl. Environ. Microbiol. 75: 5489-5495.   DOI   ScienceOn
34 Sarmah AK, Meyer MT, Boxall AB. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65: 725-759.   DOI   ScienceOn
35 Looft T, Allen HK, Casey TA, Alt DP, Stanton TB. 2014. Carbadox has both temporary and lasting effects on the swine gut microbiota. Front. Microbiol. 5: 276.   DOI   ScienceOn
36 Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, et al. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl. Acad. Sci. USA 109: 1691-1696.   DOI
37 Konstantinov SR, Smidt H, Akkermans ADL, Casini L, Trevisi P, Mazzoni M, et al. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66: 599-607.   DOI   ScienceOn
38 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120.   DOI   ScienceOn
39 Lowenthal JW, Lambrecht B, van den Berg TP, Andrew ME, Strom AD, Bean AG. 2000. Avian cytokines − the natural approach to therapeutics. Dev. Comp. Immunol. 24: 355-365.   DOI   ScienceOn
40 Marshall BM, Levy SB. 2011. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24: 718-733.   DOI   ScienceOn
41 Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. 2011. Longitudinal investigation of the agerelated bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 153: 124-133.   DOI   ScienceOn
42 Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. 2012. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc. Natl. Acad. Sci. USA 109: 15485-15490.   DOI
43 Juntunen P, Heiska H, Olkkola S, Myllyniemi A-L, Hänninen M-L. 2010. Antimicrobial resistance in Campylobacter coli selected by tylosin treatment at a pig farm. Vet. Microbiol. 146: 90-97.   DOI   ScienceOn
44 May KD, Wells JE, Maxwell CV, Oliver WT. 2012. Granulated lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology of 10-day-old pigs. J. Anim. Sci. 90: 1118-1125.   DOI   ScienceOn