• Title/Summary/Keyword: Microbacterium sp.

Search Result 25, Processing Time 0.023 seconds

Studies on Utilization of Diaminododecane by Microbacterium sp. EL-0112 L (Microbacterium sp. EL - 0112L의 Diaminododecane 자화에 관한 연구)

  • 이미연;이상준
    • Journal of Environmental Health Sciences
    • /
    • v.11 no.2
    • /
    • pp.65-75
    • /
    • 1985
  • Microorganisms capable of utilizing diaminododecane containing amine groups diterminally were isolated from the soil by enrichment culture. One strain of these isolated strain, designated as EL-0112L, was selected for this study. The results of this study were as follows. 1. This isolated strain EL-0112L was identified as Microbacterium, from the results of morphological, cultural, and biochemical tests. This isolated strain was named temporarily Microbacterium sp. EL-0112L for convenience. 2. Microbacterium sp. EL-0112L was tested for ability to utilize different kinds of substitued alkanes containing cyan, amine, chloro, and thiol groups(monoterminally or diterminall substituted) as carbon source. Pentamethylenediamine, hexamethylenediamine, n-decane, laurylamine, and alkane derivatives containing cyan, chloro, and thiol groups were not utilized by Microbacterium sp. EL-0112L. 3. The alkane derivatives that did not serve as growth substrates were tested further in oxidation tests using resting cell preparation of Microbacterium sp. EL-0112 L. Alkane derivatives containing cyan, chloro, thiol groups, and n-decane were oxidized by Microbacterium sp. EL-0112 L. It is possible that this isolated strain is also able to degrade their substituted counterparts since they are structually similar to diaminododecane. The remarkable substrates that were being oxidized were dichlorodecane, and 1-dodecanethiol. Microbacterium sp. EL- 0112L could not oxidize pentamethylenediamine, and hexamethylenediamine. 4. The metabolic products formed from diaminododecane by Microbacterium sp. EL-0112 L were acid compound containing carboxyl group and not containing amine group. On the thin layer chromatography, Rf values of these metabolic products were different from that of the product formed by Corynebacterium sp. EL-0112L. These results suggested the specificity of diaminododecane as carbon source.

  • PDF

A Novel Microcystin-degrading Bacterium, Microbacterium sp. MA21 (Microcystin을 분해하는 신균주 Microbacterium sp. MA21)

  • Ko, So-Ra;Lee, Young-Ki;Oh, Hee-Mock;Ahn, Chi-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.2
    • /
    • pp.158-164
    • /
    • 2013
  • A microcystin-degrading bacterium was isolated from Daechung reservoir, Korea. The isolated bacterium was identified as Microbacterium sp. by 16S rRNA gene sequence analysis, and designated as Microbacterium sp. MA21. This strain degraded cyanobacterial hepatotoxin, microcystin-LR, over 80% when incubated at $30^{\circ}C$ for 12 hr in R2A medium. Two unknown metabolites of microcystin were also identified during the degradation process. Although only Sphinogomonas and Actinobacteria have been known to degrade microcystin previously, this is the first report that Microbacterium sp. MA21 could degrade microcystin.

Physiological Characterization of BTEX Degrading Bacteria Microbacterium sp. EMB-1 and Rhodococ-cus sp. EMB-2 Isolated from Reed Rhizosphere of Sunchon Bay (순천만 갈대의 근권으로부터 분리한 BTEX 분해세균 Microbacterium sp. EMB-1과 Rhodococcus sp. EMB-2의 생리학적 특성 분석)

  • Kang Sung-Mi;Oh Kye-Heon;Kahng Hyung-Yeel
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.3
    • /
    • pp.169-177
    • /
    • 2005
  • This study focuses on investigating roles of microorganisms in decontamination of reed rhizosphere in Sunchon Bay, Korea, which is considered one of the marsh and mud environment severely affected by human activities such as agriculture and fisheries. In general, the bay is known to play the role of the buffering zone to reduce the sudden impact or change by environmental stresses. In our initial efforts to elucidate the microbial functions in decontamination process in reed rhizosphere, pure bacteria capable of degrading aromatic hydrocarbons were isolated from reed (Phragmites communis) rhizosphere of Sunchon bay by enrichment culture using either benzene, toluene, ethylbenzene, or xylene (BTEX) as a sole source of carbon and energy. Measurement of the rates of BTEX degradation and cell growth during the incubation in BTEX media under several temperature conditions demonstrated maximized degradation of BTEX at $37^{\circ}C$ in both strains. Both strains were also resistant to all the heavy metals and antibiotics tested in this study, as well as they grew well at $42^{\circ}C$. Identification of the isolates based on 16S rRNA gene sequences, and a variety of phenotypic and morphologic properties revealed that the two strains capable of BTEX catabolism were among Microbacterium sp., and Rhodococcus sp. with over $95{\%}$ confidence, designated Microbacterium sp. EMB-1 and Rhodococcus sp. EMB-2, respectively This result suggested that in the rhizosphere of reed, one of major salt marsh plants they might play an important roles in decontamination process of reed rhizosphere contaminated with petroleum such as BTEX.

Adverse Effect of the Methanotroph Methylocystis sp. M6 on the Non-Methylotroph Microbacterium sp. NM2

  • Jeong, So-Yeon;Cho, Kyung-Suk;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1706-1715
    • /
    • 2018
  • Several non-methylotrophic bacteria have been reported to improve the growth and activity of methanotrophs; however, their interactions remain to be elucidated. We investigated the interaction between Methylocystis sp. M6 and Microbacterium sp. NM2. A batch co-culture experiment showed that NM2 markedly increased the biomass and methane removal of M6. qPCR analysis revealed that NM2 enhanced both the growth and methane-monooxygenase gene expression of M6. A fed-batch experiment showed that co-culture was more efficient in removing methane than M6 alone (28.4 vs. $18.8{\mu}mol{\cdot}l^{-1}{\cdot}d^{-1}$), although the biomass levels were similar. A starvation experiment for 21 days showed that M6 population remained stable while NM2 population decreased by 66% in co-culture, but the results were opposite in pure cultures, indicating that M6 may cross-feed growth substrates from NM2. These results indicate that M6 apparently had no negative effect on NM2 when M6 actively proliferated with methane. Interestingly, a batch experiment involving a dialysis membrane indicates that physical proximity between NM2 and M6 is required for such biomass and methane removal enhancement. Collectively, the observed interaction is beneficial to the methanotroph but adversely affects the non-methylotroph; moreover, it requires physical proximity, suggesting a tight association between methanotrophs and non-methylotrophs in natural environments.

Production and Properties of Hemicellulases by an Isolate of Microbacterium sp. (Microbacterium sp. 분리균의 Hemicellulases 생산성과 효소특성)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • A bacterium producing the extracellular mannanase and xylanase was isolated from Korean farm soil by successive subcultures in a minimal medium supplemented with palm kernel meal (PKM) and rice bran. The isolate YB-1106 showed 98% similarity with Microbacterium arabinogalactanolyticum on the basis of 16S rRNA gene sequences. The additional carbohydrates including locust bean gum (LBG) and PKM increased the mannanase productivity of the YB-1106, while the xylanase productivity of the isolate was increased by wheat bran, oat spelt xylan, rice bran and xylose. Particularly, maximum mannanase and xylanase activities were obtained in the culture filtrate of tryptic soy broth supplemented with 1% LBG or 2% wheat bran, respectively. Both enzyme activities were produced at stationary growth phase. The mannanase of culture supernatant was the most active at $50^{\circ}C$ and pH 6.0, while xylanase of culture supernatant was the most active at $55^{\circ}C$ and pH 6.5. The predominant products resulting from the mannanase or xylanase hydrolysis were oligosaccharides for LBG or xylan, respectively.

Applicability of Spent Mushroom Media as Horticultural Nursery Media (버섯재배 후 탈병배지의 원예용 상토재료 이용성 검토)

  • Lee, Chan-Jung;Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.117-122
    • /
    • 2009
  • This study was carried out to investigate applicability of Spent Mushroom Media(SMM) as horticultural nursery media. After the mushroom has been harvested, the SMM contains a lot of organic material, different microorganism and high density of mushroom hypha. The pH, phosphate and exchangeable cation concentrations of SMM of Flammulina velutipes were higher than those of any other treatment. The CEC and $NH_4-N$ were the highest in SMM of bottle-cultivated oyster mushroom (Pleurotus ostreatus). Bacteria and fungi showed the highest density in SMM of Flammulina velutipes. Most dominant bacteria were Microbacterium sp., Rhodococcus sp. and Agrobacterium sp. in SMM of Flammulina velutipes and Bacillus sp., Pseudomonas sp., Curtobacterium sp. and Microbacterium sp. in that of Pleurotus eryngii. The SMM contained high density of mushroom hypha that inhibited germination of seed and growth of young seedlings. Therefore, composting process of the SMM is indispensible to decline of vitality of mushroom hypha. The SMM of Flammulina velutipes with 0~30% vermiculite showed high germination rate in red pepper and chinese cabbage seeds. SMM of Pleurotus eryngii with 20% vermiculite showed 100% germination rate in red pepper seeds, but chinese cabbage seeds nearly failed to germinate with 30% vermiculite. The growth of red pepper was increased according to increasing mixture ratio of vermiculite. Accordingly, we concluded that SMM of Flammulina velutipes contained 0~30% of vermiculite can be used to horticultural growth bed for red pepper.

Isolation and Characterization of Comamonase sp. and Microbacterium sp. from Deep Blue Sediment Dye of Polygoum tinctoria, Niram (쪽 염료 니람으로부터 Comamonas sp.와 Microbacterium sp.의 분리 및 특성분석)

  • Jang, Seong Eun;Lee, Nam Keun;Lee, Yuri;Choi, Mee-Sung;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.28 no.1
    • /
    • pp.60-64
    • /
    • 2013
  • Two strains were isolated from the traditional Deep Blue Sediment Dye of Polygoum tinctoria, Niram, and temporarily named Niram A and Niram B, respectively. The phylogenetic analysis revealed that strain Niram A and B were closely related to the members of the genus Comamonas and Microbacterium, respectively. Strain Niram A exhibited the highest 16S rRNA gene sequence similarity to C. aquatica LMG $2370^T$ (98.06%). Strain Niram B showed 100% homology with M. oxydans DSM 20578T and M. maritypicum DSM $12512^T$. The growth of the strain Niram A and B was not inhibited in Niram medium containing high calcium concentration without free sugar as carbon source. The reducing Niram is greenish. Therefore, the reducing ability on the Niram of the strains Niram A and B were determined with the color difference of the $a^*$ values of Niram fermented-fluids. The $a^*$ value indicates the level of redness (positive value) or greenness (negative value). The green color is increasing towards the negative value. In all samples fermented for 10 days, the $a^*$ values among samples were no significant difference. However, samples fermented for 15 days have an appreciable change. After fermentation for 15 days, the control Niram sample had $-3.96{\pm}0.02$ of the $a^*$ value. On the other hand, the Niram samples fermented with the strain Niram A and B showed $-4.20{\pm}0.02$ of the $a^*$ value and $-7.86{\pm}0.03$ of the $a^*$ value, respectively. In the reducing ability on the Niram, the strain Niram B was significantly better than the strain Niram A.

Comparative Analysis of Bacterial Diversity in the Intestinal Tract of Earthworm (Eisenia fetida) using DGGE and Pyrosequencing (DGGE 방법과 Pyrosequencing 방법을 이용한 지렁이 장내미생물의 다양성 분석)

  • Kim, Eun-Sung;Hong, Sung-Wook;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.374-381
    • /
    • 2011
  • The beneficial effects of Eisenia fetida on soil properties have been attributed to their interaction with soil microorganisms. The bacterial diversity of the intestinal tract of E. fetida was investigated by culture-dependent and culture-independent methods including denaturing gradient gel electrophoresis (DGGE) and pyrosequencing analyses. In a pure culture, Lysinibacillus fusiformis (51%), Bacillus cereus (30%), Enterobacter aerogenes (21%), and L. sphaericus (15%) were identified as the dominant microorganisms. In the DGGE analyses, B. cereus (15.1%), Enterobacter sp. (13.6%), an uncultured bacterium (13.1%), and B. stearothermophilus (7.8%) were identified as the dominant microorganisms. In the pyrosequencing analyses, Microbacterium soli (26%), B. cereus (10%), M. esteraromaticum (6%), and Frigoribacterium sp. (6%) were identified as the dominant microorganisms. The other strains identified were Aeromonas sp., Pseudomonas sp., Borrelia sp., Cellulosimicrobium sp., Klebsiella sp., and Leifsonia sp. The results illustrate that culture independent methods are better able to detect unculturable microorganisms and a wider range of species, as opposed to isolation by culture dependent methods.

Microbacterium elymi sp. nov., Isolated from the Rhizospheric Soil of Elymus tsukushiensis, a Plant Native to the Dokdo Islands, Republic of Korea

  • Ye-Ji Hwang;Soo-Yeong Lee;Jin-Soo Son;Jin-suk Youn;Woong Lee;Jae-Ho Shin;Mi-Hwa Lee;Sa-Youl Ghim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.188-194
    • /
    • 2023
  • Microbacterium elymi KUDC0405T was isolated from the rhizosphere of Elymus tsukushiensis from the Dokdo Islands. The KUDC0405T strain was Gram-stain-positive, non-spore forming, non-motile, and facultatively anaerobic bacteria. Strain KUDC0405T was a rod-shaped bacterium with size dimensions of 0.3-0.4 × 0.7-0.8 ㎛. Based on 16S rRNA gene sequences, KUDC0405T was most closely related to Microbacterium bovistercoris NEAU-LLET (97.8%) and Microbacterium pseudoresistens CC-5209T (97.6%). The dDDH (digital DNA-DNA hybridization) values between KUDC0405T and M. bovistercoris NEAU-LLET and M. pseudoresistens CC-5209T were below 17.3% and 17.5%, respectively. The ANI (average nucleotide identity) values among strains KUDC0405T, M. bovistercoris NEAU-LLET, and M. pseudoresistens CC-5209T were 86.6% and 80.7%, respectively. The AAI (average amino acid identity) values were 64.66% and 64.97%, respectively, between KUDC0405T and its closest related type strains. The genome contained 3,596 CDCs, three rRNAs, 46 tRNAs, and three non-coding RNAs (ncRNAs). The genomic DNA GC content was 70.4%. The polar lipids included diphosphatydilglycerol, glycolipid, phosphatydilglycerol, and unknown phospholipid, and the major fatty acids were anteiso-C17:0 and iso-C16:0. Strain KUDC0405T contained MK-12 as the major menaquinone. Based on genotypic, phylogenetic, and phenotypic properties, strain KUDC0405T should be considered a novel species within the genus Microbacterium, for which we propose the name M. elymi sp. nov., and the type strain as KUDC0405T (=KCTC 49411T, =CGMCC1.18472T).