• Title/Summary/Keyword: Microalgae

Search Result 576, Processing Time 0.031 seconds

Spatial Characteristic in Food Sources for Benthic Invertebrates in an Estuary Tidal flat: Carbon and Nitrogen Stable Isotope Analyses (안정동위원소 비를 이용한 하구 갯벌에 있어서 저서 무척추 동물의 유기물 기원의 공간적 특성)

  • Shin, Woo-Seok;Lee, Yong-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2010
  • The spatial variability in the food chain structure of an estuarine environment(Nanakita estuarine, Japan) was investigated using stable carbon and nitrogen isotope. Potential organic matter sources(TP:Terrstrial Plant, MPOM:Marine particulate organic matter, BMA:Benthic microalgae, EPOM:Estuarine particulate organic matter), sedimentary organic matter and benthic invertebrates(Nuttallia olivacea and Nereidae) were sampled at four locations with different tidal flat types(e.g. sanddy, sanddy-muddy and muddy). The main objective of the present study was to determine food sources of Nuttallia olivacea and Nereidae along with small-scale spatial variability within the community of benthic invertebrates. TP(${\delta}^{13}C=-26.6{\pm}0.76$ and ${\delta}^{15}N=2.7{\pm}0.31$) and EPOM(${\delta}^{13}C=-25.5{\pm}0.13$ and ${\delta}^{15}N=5.2{\pm}0.46$) were isotopically distinct from BMA(${\delta}^{13}C=-16.3$ and ${\delta}^{15}N=6.2$) and MPOM(${\delta}^{13}C=-19.6{\pm}0.08$ and ${\delta}^{15}N=8.9{\pm}1.70$). ${\delta}^{13}C$ values of sedimentary organic matter showed a distinct gradient in the range of -27.4 to -22.8‰ with a declining trend from the upstream to the downstream stations. The stable carbon and nitrogen isotope values of benthic invertebrates in the study site was -22.8 to -18.4‰ for ${\delta}^{16}C$ and 8.1 to 11.9‰ or ${\delta}^{15}N$, respectively. Mixing model(Isosource) calculations based on stable isotope measurements showed that benthic invertebrates of Nuttallia olivacea and Nereidae were found to be dominated by MPOM and BMA in stations. Whereas, TP and EPOM showed little influence to benthic invertebrates. The current result suggests that the different contribution for benthic invertebrates should be affected by both seasonal variation and physical factor among stations.

Isotopic Evidence of Marine Yeast to Artificial Culture of Moina macrocopa (물벼룩(Moina macrocopa)배양을 위한 해양효모의 유효성에 대한 안전 동위원소의 증거)

  • Kim Mu-Chan;Kang Chang-Keun;Park Hye-Young;Lee Dae-Seong;Kim Yun-Sook;Lee Won-Jae
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • A feeding trial was conducted to test the use of marine yeasts isolated from seawaters and sediments as a dietary source in cultivating a Cladocera, Moina macrocopa which is available as an alternative live food for fish larvae. The marine yeast-fed M. macrocopa had similar essential amino acid profiles to the documented values for Rotifers and Artemia enriched in microalgae and commercial diets. Erythrobacter sp. $S{\pi}-1$ lacked ${\omega}-3$ high unsaturated fatty acids (HUFAs), $20:5{\omega}-3$ (EPA) and $22:6{\omega}-3$ (DHA), which were also poor but detected in both the marine yeasts. An increase in the $20:5{\omega}-3$ and $22:6{\omega}-3$ levels, compared with the levels in marine yeast strains themselves, was more pronounced in the $22:6{\omega}-3$ level of Moina fed the Candida sp. Y-16, resulting in a high DHA:EPA ratio. When the Moina diets were switched, their ${\delta}^{13}C$ values shifted gradually toward the values of the switched diets. Diet switch from Erythrobacter sp. $S{\pi}-1$to Candide sp. Y.16 resulted in a more rapid turnover of Moina tissue carbon than that in the inverse case. When fed a mixed diet, the ${\delta}^{13}C$ values of Moina tissue approached the value of marine yeasts immediately. These temporal changes in the ${\delta}^{13}C$ values of Moina tissue indicate the preferential ingestion of marine yeasts and a selective assimilation of the carbon originated from marine yeasts. These findings suggest that marine yeasts, particularly Candida sp. Y-16, are highly available to mass cultures of M. macrocopa, providing better nutritional and dietaty values than the commercial diet (Erythrobacter sp. $S{\pi}-1$).

Blue Carbon Resources in the East Sea of Korea and Their Values and Potential Applications (동해안 블루카본 자원의 가치와 활용방안)

  • Yoon, Ho-Sung;Do, Jeong-Mi;Jeon, Byung Hee;Yeo, Hee-Tae;Jang, Hyeong Seok;Yang, Hee Wook;Suh, Ho Seong;Hong, Ji Won
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.578-587
    • /
    • 2022
  • Korea, as the world's 7th largest emitter of greenhouse gases, has raised the national greenhouse gas reduction target as international regulations have been strengthened. As it is possible to utilize coastal and marine ecosystems as important nature-based solutions (NbS) for implementing climate change mitigation or adaptation plans, the blue carbon ecosystem is now receiving attention. Blue carbon refers to carbon that is deposited and stored for a long period after carbon dioxide (CO2) is absorbed as biomass by coastal ecosystems or oceanic ecosystems through photosynthesis. Currently, there are only three blue carbon ecosystems officially recognized by the Intergovernmental Panel on Climate Change (IPCC): mangroves, salt marshes, and seagrasses. However, the results of new research on the high CO2 sequestration and storage capacity of various new blue carbon sinks, such as seaweeds, microalgae, coral reefs, and non-vegetated tidal flats, have been continuously reported to the academic community recently. The possibility of IPCC international accreditation is gradually increasing through scientific verification related to calculations. In this review, the current status and potential value of seaweeds, seagrass fields, and non-vegetated tidal flats, which are sources of blue carbon on the east coast, are discussed. This paper confirms that seaweed resources are the most effective NbS in the East Sea of Korea. In addition, we would like to suggest the direction of research and development (R&D) and utilization so that new blue carbon sinks can obtain international IPCC certification in the near future.

A review of the mass-mortalities of sea-cage farm fishes (해상 가두리양식장 양식어류의 대량폐사에 대하여)

  • Han, Jido;Lee, Deok-Chan
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.1-25
    • /
    • 2022
  • The aquaculture industry has developed rapidly over the last three decades and is an important industry that supplies over 15% of humans' animal protein intake; therefore, there is a need to increase production to meet the continuous demand. The fish cage farms on the southern coast (Kyengsangnam-do and Jeollanam-do) of Korea are critical resources in aquaculture because they account for approximately 90% of the national total fish cage farms by water area ratio. However, the current aquaculture environment is being gradually affected by climate change, which is a global issue, and its effects are expected to intensify in the future. Therefore, it is urgently imperative to accurately evaluate the effects of climate change on South Korean aquaculture industries and to develop social and national strategies to minimize damage to the fishing industry. The damage to fish farmed in cage farms on the southern coast is increasing annually and the leading causes are high and low water temperature and red tides, which are directly or indirectly related to climate change. At present, global warming can provide opportunities for aquaculture industrialization of fish or other novel species, with economic implications. However, despite such opportunities, the influx of new species can also cause problems such as ecological disturbances, increase in the reproduction frequency of microalgae such as red tide, increase in disease incidence, and occurrence and periods of high water temperatures in summer. The scale of farmed fish mortality is increasing due to the complex effects of these factors. Increased damages due to fish mortality not only have severe economic impacts on the aquaculture industry, but the social costs of responding to the damage and follow-up measures also increase. various active responses can reduce the mortality damage in fish farms such as improving the management skills in aquaculture, improved species breeding, efficient food management, disease prevention, proactive responses, and system-wide improvements. This review article analyzes the large-scale mortality cases occurring in fish cage farms on the southern coast of Korea and proposes measures to mitigate mortality and enhance responses to such scenarios.

Larvae Growth and Biochemical Composition Change of the Pacific Oyster Crassostra gigas, Larvae during Artificial Seed Production (참굴 Crassostrea gigas 인공종묘생산 시 유생의 성장과 체성분 변화)

  • Hur, Young-Baek;Min, Kwang-Sik;Kim, Tae-Eic;Lee, Seung-Ju;Hur, Sung-Bum
    • Journal of Aquaculture
    • /
    • v.21 no.4
    • /
    • pp.203-212
    • /
    • 2008
  • A nutritional demand of oyster, Crassostrea gigas larva as part of research for improving of utilization of microalgae being used for the artificial oyster seed production. The change of body growth and biochemical compositions of larvae were investigated during larvae rearing in hatchery. The larvae were cultured in 60 M/T tank and fed mixture 6 different phytoplankton species, Isochrysis galbana (30%), Cheatoceros gracilis (20%), Pavlova lutheri (20%), Phaeodactylum triconutum (10%), Nannochryis oculata (10%) and Tetraselmis tetrathele (10%). The initial feeding amount was $0.3{\times}10^4cells/mL$ at three times a day to D-shaped larva and the feeding amount had been increased 30% gradually every two day since the larvae were raising. The larvae were developed from D shape to pediveliger stage for 12 days. The daily growth of shell length and hight were $5.8{\sim}30.8\;{\mu}m$ and $8.7{\sim}31.4\;{\mu}m$, respectively and weight gains were changed from D shape to pediveliger as follow: wet weight was $0.52{\sim}15.0\;{\mu}g/larva$, dry weight was $0.2{\sim}6.5\;{\mu}g/larva$, and ash free dry weight was $0.1{\sim}8.5\;{\mu}g/larva$. The larvae growth pattern shown a logarithmic phase from D shape to umbone stage but after that stage shown a exponential growth aspect. The crude protein, crude lipid and nitrogen free extract (NFE) of larvae during rearing periods were analyzed as $6.1{\sim}10.6%$, $0.6{\sim}1.1%$ and 1.0-2.7%, respectively. And the total amino acid contents of the larvae during rearing periods were in order as glutamic acid $1.26{\sim}2.24%$, aspartic acid $0.97{\sim}1.70%$, and methionine $0.12{\sim}0.33%$. Of the total fatty acid in the analyzed larvae, the saturated fatty acid (SSAFA) was decreased from 54.3% (D shaped larvae) to 17.1 % (pediveliger) as larvae development but the total mono-unsaturated fatty acid (${\Sigma}MOFA$) and Poly-unsaturated fatty acid (${\Sigma}PUFA$) were increased from 29.9% and 7.8% to 40.6% and 45.6%, respectively. By the way the each fatty acid of the larvae were composed of palmitic acid $9.89{\sim}36.95%$, oleic acid $12.17{\sim}32.29%$, linoleic acid $1.96{\sim}33.55%$, EPA $2.17{\sim}11.58%$ and DHA $1.95{\sim}4.51%$. As a result of this study, the larvae of oyster were demanded a various nutrients for healthy growth and the feeding control, expecially after umbone stage larvae are a rapidly growing time, is very important for success of artificial seed production.

Isolation of Marine Bacteria Killing Red Tide Microalgae -IV. Characteristics of Algicidal Substances, Produced from Micrococcus sp. LG-5 and the Effects on Marine Organisms- (적조생물 살조세균 탐색 -IV. 살조세균 Micrococcus sp. LG-5가 생산하는 살조물질의 특성과 해양생물에 미치는 영향-)

  • JEONG Seong-Youn;PARK Young-Tae;KIM Mu-Chan;CHOI Seok-Cheol;SEONG Hee-Kyung;KIM Jai-Young;KIM Tae-Un;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • An algicidal bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides was isolated. The optimal conditions for the highest algicidal activity of bacterial culture filtrate showed in the range of $20{\~}30^{\circ}C$, at pH 7.0 and $3.0{\%}$ of NaCl concentration. In addition, $IC_(50)(mean of 50{\%} inhibitory concentration)$ of the culture filtrate against C. polykrikoides after incubation of 5 days was $0.482{\%}$. To investigate heat and pH stability of the culture filtrate of Micrococcus sp. LG-5, the culture filtrate ($pore size, 0.1 {\mu}m$) was heated to $121^{\circ}C for 15 min$ and adjusted pH from 2.0 to 10.0. There were no significant changes in algicidal activity by heat treatment and the pH change between pH from 5.0 to 10.0. The algicidal substances produced from Micrococcus sp. LG-5 were mainly detected in the fraction of $10,000{\~}1,000$ MWCO (molecular weight cut-off). The culture filtrate of Micrococous sp. LG-5 showed antimicrobial activity against Enterococcus faecalis, Escheiichia coli, Uebsiella pneunioniae and Vibrio altinolyticus, but did not show against Pseudomonas aeminosa, P. Buorescens, Salmonella typhi, Staphylococcus aureus, V. cholerae and V parahaemolyicus. The culture filtrate of Micrococcus sp. LG-5 was examined against 16 phytoplankton species and showed the algicidal activity against Ajexandzium tuarense, Eutreptiella Drnnastin, Gymnodinium catenatum, G. mikimotoi, G. sanguineum, eyodinium impuaicum, Heterocapsa triquetra, Heterosipa akashiwo, Prorocentrum micans and Pyraminonas sp.. However no algicidal effects of Micrococcus sp. LG-5 were observed against Chlamydomonas sp., Cylindrotheoa closterium, P. mininum, P. triestimum, Pseudonieschia sp. and Sczipuiella trochoidea. On the other hand, algicidal activity on the tested marinelivefood was not detected except for Isochrysis galbana. In addition, physiological responses of cultured olive flounder (Paralichthys oliraceus) exposed to $1 and 10{\%}$ of the culture filtrate of Micrococcus sp. LG-5 were measured. There were no clear changes in AST, GGT, creatinine, urea, total cholesterol, total protein, albumine, $Mg^(+2), Ca^(+2), Na^+, K^+, and Cl^-$. These results indicate that olive flounders were not affected when they were exposed to the culture filtrate of Micrococcus sp. LG-5.

  • PDF