Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.10.1152

Description and Application of a Marine Microalga Auxenochlorella protothecoides Isolated from Ulleung-do  

Jang, Hyeong Seok (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
Kang, Nam Seon (Marine Life-resources Management Department, National Marine Biodiversity Institute of Korea)
Kim, Kyeong Mi (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
Jeon, Byung Hee (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
Park, Joon Sang (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
Hong, Ji Won (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea)
Publication Information
Journal of Life Science / v.27, no.10, 2017 , pp. 1152-1160 More about this Journal
Abstract
A unicellular green alga was axenically isolated from a tidal pool on Ulleung-do, Korea. Morphological, molecular, and biochemical analyses revealed that the isolate belonged to Auxenochlorella protothecoides. The current study is the first record of this species in Korea. The microalgal strain was named as A. protothecoides MM0011 and its growth, lipid and pigment compositions, and biomass properties were investigated. The strain is able to thrive in a wide range of temperatures ($5{\sim}35^{\circ}C$) and to withstand up to 1.5 M NaCl. The results of GC/MS analysis showed that the isolate was rich in nutritionally important polyunsaturated fatty acids (PUFAs). Its major fatty acids were linoleic acid (27.6%) and ${\alpha}-linolenic$ acid (39.6%). Thus, this indigenous microalga has potential as an alternative source of ${\omega}3$ and ${\omega}6$ PUFAs, which currently come from fish and plant oils. Also, the HPLC analysis revealed that the value-added antioxidant, lutein, was biosynthesized as the accessory pigments by the microalga. A proximate analysis showed that the volatile matter content was 85.6% and an ultimate analysis indicated that the gross calorific value was $20.3MJ\;kg^{-1}$. Since 40.5% of total nitrogen and 27.9% of total phosphorus were removed from the medium, respectively, it also has potential as a feedstock for biofuel applications which could be coupled to wastewater treatment. In addition, the biomass may also serve as an excellent animal feed because of its high protein content (51.4%). Therefore, A. protothecoides MM0011 shows promise for application in production of microalgae-based biochemicals and as a biomass feedstock.
Keywords
Auxenochlorella protothecoides; first record; lutein; PUFAs; Ulleung-do;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Verbruggen, H., Ashworth, M., LoDuca, S. T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F. W., Littler, D. S., Littler, M. M., Leliaert, F. and DeClecrk, O. 2009. A multi-locus time-calibrated phylogeny of the siphonous green algae. Mol. Phylogenet. Evol. 50, 642-653.   DOI
2 Xiao, Y., Lu, Y., Dai, J. and Wu, Q. 2015. Industrial fermentation of Auxenochlorella protothecoides for production of biodiesel and its application in vehicle diesel engines. Front. Bioeng. Biotechnol. 3, 164
3 Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Lee, D. J. and Chang, J. S. 2017. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 229, 53-62.   DOI
4 Ceron-Garcia, M. C., Macias-Sanchez M. D., Sanchez-Miron A., Garcia-Camacho F., Molina-Grima E. 2013. A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl. Energy 103, 341-349.   DOI
5 Cloern, J. E., Foster, S. Q. and Kleckner, A. E. 2014. Phytoplankton primary production in the world's estuarine-coastal ecosystems. Biogeosciences 11, 2477-2501.   DOI
6 Hu, B., Min, M., Zhou, W., Li, Y., Mohr, M., Cheng, Y., Lei, H., Liu, Y., Lin, X., Chen, P. and Ruan, R. 2012. Influence of exogenous $CO_2$ on biomass and lipid accumulation of microalgae Auxenochlorella protothecoides cultivated in concentrated municipal wastewater. Appl. Biochem. Biotechnol. 166, 1661-1673.   DOI
7 Cuellar-Bermudez, S. P., Aguilar-Hernandez, I., Cardenas-Chavez, D. L., Ornelas-Soto, N., Romero-Ogawa, M. A. and Parra-Saldivar, R. 2015. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 8, 190-209.   DOI
8 Darienko, T. and Proschold, T. 2015. Genetic variability and taxonomic revision of the genus Auxenochlorella (Shihira et Krauss) Kalina et Puncocharova (Trebouxiophyceae, Chlorophyta). J. Phycol. 51, 394-400.   DOI
9 Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198.   DOI
10 Hutchins, D. A., Mulholland, M. R. and Fu, F. 2009. Nutrient cycles and marine microbes in a $CO_2$-enriched ocean. Oceanography 22, 128-145.
11 Xiong, W., Li, X., Xiang, J. and Wu, Q. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl. Microbiol. Biotechnol. 78, 29-36.   DOI
12 Zapata, M. and Garrido, J. L. 1991. Influence of injection conditions in reversed-phase high-performance liquid of chromatography of chlorophylls and carotenoids. Chromatographia 31, 589-594.   DOI
13 Zapata, M., Rodriguez, F. and Garrido, J .L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29-45.   DOI
14 Leu, S. and Boussiba, S. 2014. Advances in the production of high-value products by microalgae. Ind. Biotechnol. 10, 169-183.   DOI
15 Zhou, W., Li, Y., Min, M., Hu, B., Chen, P. and Ruan, R. 2011. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour. Technol. 102, 6909-6919.   DOI
16 Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., Liu, Y., Chen, P. and Ruan, R. 2012. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour. Technol. 110, 448-455.   DOI
17 Kalina, T. and Puncocharova, M. 1987. Taxonomy of the subfamily Scotiellocystoideae Fott 1976 (Chlorellaceae, Chlorophyceae). Algol. Stud. 45, 473-521.
18 Krinsky, N. I., Landrum, J. T. and Bone, R. A. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 23, 171-201.   DOI
19 Kruger, W. 1894. Kurze Charakteristik einiger niederer Organismen im Saftflusse der Laubbaume. Hedwigia 33, 241-66.
20 Mehta, L. R., Dworkin, R. H. and Schwid, S. R. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5, 82-92.
21 Miao, X. and Wu, Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841-846.   DOI
22 Min, M., Hu, B., Zhou, W., Li, Y., Chen, P. and Ruan, R. 2012. Mutual influence of light and $CO_2$ on carbon sequestration via cultivating mixotrophic alga Auxenochlorella protothecoides UMN280 in an organic carbon-rich wastewater. J. Appl. Phycol. 24, 1099-1105.   DOI
23 Packaged Facts. 2012. The Global Market for EPA/DHA Omega-3 Products. Published online at: http://www.packagedfacts.com/Global-EPA-DHA-7145087/ (accessed on 26 July 2017).
24 Sanchez, J. F., Fernandez, J. M., Acien, F. G., Rueda, A., Perez-Parra, J. and Molina, E. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43, 398-405.   DOI
25 Pulz, O. and Gross, W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65, 635-648.   DOI
26 Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
27 Shihira, I. and Krauss, R. W. 1965. Chlorella. Physiology and taxonomy of forty-one isolates, pp. 1-97. Maryland University of Maryland, College Park.
28 Shinde, S. and Lele, S. S. 2010. Statistical media optimization for lutein production from microalgae Auxenochlorella protothecoides SAG 211-7A. Int. J. Adv. Biotechnol. Res. 1, 104-114.
29 Silva, P. C. (1996-to date). Index Nominum Algarum, University Herbarium, University of California, Berkeley http://ucjeps.berkeley.edu/INA.html.
30 Ross, A. B., Jones, J. M., Kubacki, M. L. and Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99, 6494-6504.   DOI
31 Sanz, N., Garcia-Blanco, A., Gavalas-Olea, A., Loures, P. and Garrido, J. L. 2015. Phytoplankton pigment biomarkers: HPLC separation using a pentafluorophenyloctadecyl silica column. Methods Ecol. Evol. 6, 1199-1209.   DOI
32 Schirmer, A., Rude, M. A., Li, X., Popova, E. and Del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329, 559-562.   DOI
33 Shi, X. M., Liu, H. J., Zhang, X. W. and Chen, F. 1999. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 34, 341-347.   DOI
34 Shi, X. M. and Chen, F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Prog. 18, 723-727.   DOI
35 Sun, Z., Li, T., Zhou, Z. G. and Jiang, Y. 2015. Microalgae as a source of lutein: Chemistry, biosynthesis, and carotenogenesis. pp. 37-58. In: Posten, C. and Chen S. F. (eds.), Microalgae Biotechnology. Springer International Publishing AG: Cham, Switzerland.
36 Arrigo, K. R. 2005. Marine microorganisms and global nutrient cycles. Nature 437, 349-355.   DOI
37 Ausich, R. L. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69, 2169-2173.   DOI
38 Breuer, G., Evers, W. A. C., de Vree, J. H., Kleinegris, D. M. M., Martens, D. E., Wijffels, R. H. and Lamers, P. P. 2013 Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80, e50628.
39 Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96.   DOI
40 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
41 Wei, D., Chen, F., Chen, G., Zhang, X., Liu, L. and Zhang, H. 2008. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci. China C. Life Sci. 51, 1088-1093.   DOI
42 White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J. and White, T. J. (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press: San Diego, CA, USA.
43 Vachali, P., Bhosale, P. and Bernstein, P. S. 2012. Microbial carotenoids. pp. 41-59. In: Barredo, J. (ed.), Microbial Carotenoids from Fungi: Methods and Protocols. Springer International Publishing AG: Cham, Switzerland.