• Title/Summary/Keyword: MicroRNA-21

Search Result 74, Processing Time 0.027 seconds

MicroRNA-126 Regulates the Expression of Stem Cell Transcription Factors (Sox2 and Lin28) in Various Ovarian Tumors (MicroRNA-126은 난소 종양세포의 줄기세포 전사인자 (Sox2와 Lin28) 발현을 조절한다)

  • Park, Ho;Jekal, Seung Joo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.298-305
    • /
    • 2015
  • Stem cell-like tumor cells are reported to be the main reason for tumor recurrence and metastasis. As one of the new approaches to overcome cancer, studies are emerging to inhibit the expressions of stem cell transcriptional factors (Oct4, Sox2, Klf-4, and Lin28) in cancer cells. MicroRNAs are master genetic regulators that can control development and differentiation of stem cells. In this study using various ovarian tumors (Skov3, Ovcar3, Tov112D, Tov21G, PA-1 and Hsc832(c)T), we examined the expressions of stem cell-related transcription factors, and the biological changes in cell survival and growth by miR-126 that targets stem cell transcriptional factors. We observed that treatment of miR-126 induced the morphological changes and cell suspension in most cells. In addition, miR-126 induced gradual regression of cell division except Skov3 cells, especially significant time-dependent reduction in Tov112D, Tov21G and PA-1. When we examined the expression of stem cell transcriptional factors, Sox2 was shown to be down-regulated after miR-126. Our results demonstrate that miR-126 treatment can provide the reversible environment to regulate cell division and to induce cell death of ovarian tumors, suggesting the molecular biological clues for clinical usage.

Detection of MicroRNA-21 Expression as a Potential Screening Biomarker for Colorectal Cancer: a Meta-analysis

  • Jiang, Jian-Xin;Zhang, Na;Liu, Zhong-Min;Wang, Yan-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7583-7588
    • /
    • 2014
  • Background: Colorectal cancer (CRC) is a major cause of cancer-related death and cancer-related incidence worldwide. The potential of microRNA-21 (miR-21) as a biomarker for CRC detection has been studied in several studies. However, the results were inconsistent. Therefore, we conducted the present meta-analysis to systematically assess the diagnostic value of miR-21 for CRC. Materials and Methods: Using a random-effect model, the pooled sensitivity (SEN), specificity (SPE), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to evaluate the diagnostic performance of miR-21 for CRC. A summary receiver operating characteristic (SROC) curve and an area under the curve (AUC) were also generated to assess the diagnosis accuracy of miR-21 for CRC. Q test and I2 statistics were used to assess between-study heterogeneity. Publication bias was evaluated by the Deeks' funnel plot asymmetry test. Results: A total of 986 CRC patients and 702 matched healthy controls from 8 studies were involved in the meta-analysis. The pooled results for SEN, SPE, PLR, NLR, DOR, and AUC were 57% (95%CI: 39%-74%), 87% (95%CI: 78%-93%), 4.4 (95%CI: 2.4-8.0), 0.49 (95%CI: 0.32-0.74), 9 (95%CI: 4-22), and 0.83 (95%CI: 0.79-0.86), respectively. Subgroup analyses further suggested that blood-based studies showed a better diagnostic accuracy compared with feces-based studies, indicating that blood may be a better matrix for miR-21 assay and CRC detection. Conclusions: Our findings suggest that miR-21 has a potential diagnostic value for CRC with a moderate level of overall diagnostic accuracy. Hence, it could be used as auxiliary means for the initial screening of CRC and avoid unnecessary colonoscopy, which is an invasive and expensive procedure.

Transcriptional Regulation of MicroRNA-17 by PPARγ in Adipogenesis (지방분화시 PPARγ에 의한 microRNA-17의 발현 조절)

  • Bae, In-Seon;Kim, Hyun-Ji;Chung, Ki Yong;Choi, Inho;Kim, Sang Hoon
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.323-328
    • /
    • 2014
  • MicroRNAs comprise a family of small noncoding RNAs that modulate physiological processes, including adipogenesis. MicroRNA-17 (miR-17) promotes adipocyte differentiation and enhances lipid accumulation. The transcriptional regulation of miR-17 during adipogenesis remains unknown. In this study, we investigated whether miR-17 is a target of peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$), which is a key regulator of adipogenesis. The levels of miR-17 and the expression of $PPAR{\gamma}$ increased after the induction of adipocyte differentiation. Three putative peroxisome proliferator response elements (PPREs) were identified in the miR-17 promoter region. Using chromatin immunoprecipitation and luciferase reporter assays, we observed the interaction of $PPAR{\gamma}$ with the miR-17 promoter. Mutagenesis experiments showed that the -677/-655 region of the miR-17 promoter could function as a PPRE site. These results suggest that $PPAR{\gamma}$ is essential for transcriptional activation of the miR-17 gene, thereby contributing to understanding the molecular mechanism of adipogenesis in adipocytes.

MicroRNA-21 promotes epithelial-mesenchymal transition and migration of human bronchial epithelial cells by targeting poly (ADP-ribose) polymerase-1 and activating PI3K/AKT signaling

  • Zhang, Shiqing;Sun, Peng;Xiao, Xinru;Hu, Yujie;Qian, Yan;Zhang, Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.239-253
    • /
    • 2022
  • Epithelial-mesenchymal transition (EMT) is known to be involved in airway remodeling and fibrosis of bronchial asthma. However, the molecular mechanisms leading to EMT have yet to be fully clarified. The current study was designed to reveal the potential mechanism of microRNA-21 (miR-21) and poly (ADP-ribose) polymerase-1 (PARP-1) affecting EMT through the PI3K/AKT signaling pathway. Human bronchial epithelial cells (16HBE cells) were transfected with miR-21 mimics/inhibitors and PARP-1 plasmid/small interfering RNA (siRNA). A dual luciferase reporter assay and biotin-labeled RNA pull-down experiments were conducted to verify the targeting relationship between miR-21 mimics and PARP-1. The migration ability of 16HBE cells was evaluated by Transwell assay. Quantitative real-time polymerase chain reaction and Western blotting experiments were applied to determine the expression of Snail, ZEB1, E-cadherin, N-cadherin, Vimentin, and PARP-1. The effects of the PI3K inhibitor LY294002 on the migration of 16HBE cells and EMT were investigated. Overexpression of miR-21 mimics induced migration and EMT of 16HBE cells, which was significantly inhibited by overexpression of PARP-1. Our findings showed that PARP-1 was a direct target of miR-21, and that miR-21 targeted PARP-1 to promote migration and EMT of 16HBE cells through the PI3K/AKT signaling pathway. Using LY294002 to block PI3K/AKT signaling pathway resulted in a significant reduction in the migration and EMT of 16HBE cells. These results suggest that miR-21 promotes EMT and migration of HBE cells by targeting PARP-1. Additionally, the PI3K/AKT signaling pathway might be involved in this mechanism, which could indicate its usefulness as a therapeutic target for asthma.

Long non-coding RNA T-cell leukemia/lymphoma 6 serves as a sponge for miR-21 modulating the cell proliferation of retinoblastoma through PTEN

  • Tao, Sisi;Wang, Weidong;Liu, Pengfei;Wang, Hua;Chen, Weirong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.449-458
    • /
    • 2019
  • Retinoblastoma (Rb) is one of the most common eye malignancies occur in childhood. The crucial roles of non-coding RNAs, particularly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been widely reported in Rb progression. In the present study, we found the expression of lncRNA T-cell leukemia/lymphoma 6 (TCL6) was significantly downregulated in Rb tissues and cell lines. Knockdown of lncRNA TCL6 promoted cell proliferation while reduced cell apoptosis in Rb cells. Moreover, lncRNA TCL6 serves as a sponge for miR-21, a previously-reported oncogenic miRNA in Rb, by direct targeting to negatively regulated miR-21 expression, therefore modulating Rb proliferation through miR-21. TCL6 overexpression inhibited Rb cell proliferation while miR-21 overexpression exerted an opposing effect; the effect of TCL6 overexpression was partially attenuated by miR-21 overexpression. PTEN/PI3K/AKT signaling pathway was involved in lncRNA TCL6/miR-21 axis modulating Rb cell proliferation. Taken together, lncRNA TCL6 serves as a tumor suppressor by acting as a sponge for miR-21 to counteract miR-21-mediated PTEN repression.

Identification of urinary microRNA biomarkers for in vivo gentamicin-induced nephrotoxicity models

  • Jeon, Byung-Suk;Lee, Soo-ho;Hwang, So-Ryeon;Yi, Hee;Bang, Ji-Hyun;Tham, Nga Thi Thu;Lee, Hyun-Kyoung;Woo, Gye-Hyeong;Kang, Hwan-Goo;Ku, Hyun-Ok
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.81.1-81.10
    • /
    • 2020
  • Background: Although previous in vivo studies explored urinary microRNA (miRNA), there is no agreement on nephrotoxicity-specific miRNA biomarkers. Objectives: In this study, we assessed whether urinary miRNAs could be employed as biomarkers for nephrotoxicity. Methods: For this, literature-based candidate miRNAs were identified by reviewing the previous studies. Female Sprague-Dawley rats received subcutaneous injections of a single dose or repeated doses (3 consecutive days) of gentamicin (GEN; 137 or 412 mg/kg). The expression of miRNAs was analyzed by real-time reverse transcription-polymerase chain reaction in 16 h pooled urine from GEN-treated rats. Results: GEN-induced acute kidney injury was confirmed by the presence of tubular necrosis. We identified let-7g-5p, miR-21-3p, 26b-3p, 192-5p, and 378a-3p significantly upregulated in the urine of GEN-treated rats with the appearance of the necrosis in proximal tubules. Specifically, miR-26-3p, 192-5p, and 378a-3p with highly expressed levels in urine of rats with GEN-induced acute tubular injury were considered to have sensitivities comparable to clinical biomarkers, such as blood urea nitrogen, serum creatinine, and urinary kidney injury molecule protein. Conclusions: These results indicated the potential involvement of urinary miRNAs in chemical-induced nephrotoxicity, suggesting that certain miRNAs could serve as biomarkers for acute nephrotoxicity.

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M.;Hassan, Zeinab K.;Zekri, Abdel Rahman N.;Gaber, Ayman A.;Rejaie, Salem S. Al;Sayed-Ahmed, Mohamed M.;Shabanah, Othman Al
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.591-598
    • /
    • 2012
  • Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks

  • Oh, Sangnam;Park, Mi Ri;Son, Seok Jun;Kim, Younghoon
    • Food Science of Animal Resources
    • /
    • v.35 no.4
    • /
    • pp.459-465
    • /
    • 2015
  • Bovine milk provides essential nutrients, including immunologically important molecules, as the primary source of nutrition to newborns. Recent studies showed that RNAs from bovine milk contain immune-related microRNAs (miRNA) that regulate various immune systems. To evaluate the biological and immunological activity of miRNAs from milk products, isolation methods need to be established. Six methods for extracting total RNAs from bovine colostrums were adopted to evaluate the isolating efficiency and expression of miRNAs. Total RNA from milk was presented in formulation of small RNAs, rather than ribosomal RNAs. Column-combined phenol isolating methods showed high recovery of total RNAs, especially the commercial columns for biofluid samples, which demonstrated outstanding efficiency for recovering miRNAs. We also evaluated the quantity of five immune-related miRNAs (miR-93, miR-106a, miR-155, miR-181a, miR-451) in milk processed by temperature treatments including low temperature for long time (LTLT, 63℃ for 30 min)-, high temperature for short time (HTST, 75℃ for 15 s)-, and ultra heat treatment (UHT, 120-130℃ for 0.5-4 s). All targeted miRNAs had significantly reduced levels in processed milks compared to colostrum and raw mature milk. Interestingly, the amount of immune-related miRNAs from HTST milk was more resistant than those of LTLT and UHT milks. Our present study examined defined methods of RNA isolation and quantification of immune-specific miRNAs from small volumes of milk for use in further analysis.

MicroRNAs as Novel Biomarkers for the Diagnosis of Alzheimer's Disease and Modern Advancements in the Treatment

  • Gunasekaran, Tamil Iniyan;Ohn, Takbum
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Alzheimer's disease is a common form of dementia occurring among the elderly population and can be identified by symptoms such as cognition impairments, memory loss and neuronal dysfunction. Alzheimer's disease was found to be caused by the deposition of $\beta$-amyloid plaques and neurofibrillary tangles. In addition, mutation in the APP (Amyloid precursor protein), Presenilin 1 (PSEN1) and Presenilin 2 (PSEN2) genes were also found to contribute to Alzheimer's disease. Since the potential conformational diagnosis of Alzheimer's disease requires histopathological tests on brain through autopsy, potential early diagnosis still remains challenging. In recent years, several researches have proposed the use of biomarkers for early diagnosis. In cerebrospinal fluid (CSF), $\beta$-amyloid(1-42), phosphorylated-tau and total tau were suggested to be effective biomarkers for Alzheimer's disease diagnosis. However, a single biomarker might not be sufficient for potential diagnosis of Alzheimer's disease. Thus, the use of RNA interference (RNAi) through microRNAs (miRNAs) has been proposed by several researchers for simultaneous analysis of several biomarkers using microarray technology. These miRNA based biomarkers can be analysed from both blood and CSF, but miRNAs from blood are advantageous over CSF as they are non-invasive and simple for collection. Moreover, the RNAi based therapeutics by siRNA (short interference RNA) or shRNA (short hairpin RNA) have also been proposed to be effective in the treatment of Alzheimer's disease. This review describes the promising application of RNAi technology in therapeutics and as a biomarker for both Alzheimer's disease diagnosis and treatment.

MicroRNA super-resolution imaging in blood for Alzheimer's disease

  • Mirae Lee;Jiwon Woo;Sang Tae Kim;Minho Moon;Sang Yun Kim;Hanna Cho;Sujin Kim;Han-Kyeol Kim;Jeong-Yoon Park
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.190-195
    • /
    • 2023
  • We propose a novel blood biomarker detection method that uses miRNA super-resolution imaging to enable the early diagnosis of Alzheimer's disease (AD). Here, we report a single-molecule detection method for visualizing disease-specific miRNA in tissue from an AD mice model, and peripheral blood mononuclear cells (PBMCs) from AD patients. Using optimized Magnified Analysis of Proteome (MAPs), we confirmed that five miRNAs contribute to neurodegenerative disease in the brain hippocampi of 5XFAD and wild-type mice. We also assessed PBMCs isolated from the whole blood of AD patients and a healthy control group, and subsequently analyzed those samples using miRNA super-resolution imaging. We detected more miR-200a-3p expression in the cornu ammonis 1 and dentate gyrus regions of 3 month-old 5XFAD mice than in wild-type mice. Additionally, miRNA super-resolution imaging of blood provides AD diagnosis platform for studying miRNA regulation inside cells at the single molecule level. Our results present a potential liquid biopsy method that could improve the diagnosis of early stage AD and other diseases.