• Title/Summary/Keyword: MicroRNA-1

Search Result 276, Processing Time 0.026 seconds

Upregulation of miR-760 and miR-186 Is Associated with Replicative Senescence in Human Lung Fibroblast Cells

  • Lee, Young-Hoon;Kim, Soo Young;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.620-627
    • /
    • 2014
  • We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) downregulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the ${\alpha}$ subunit of CK2 ($CK2{\alpha}$) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the $CK2{\alpha}3^{\prime}$-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for $CK2{\alpha}$ downregulation. The four miRNAs increased senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) staining, p53 and $p21^{Cip1/WAF1}$ expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. $CK2{\alpha}$ overexpression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through $CK2{\alpha}$ downregulation-dependent ROS generation.

Inhibition of Cell Proliferation and Migration by miR-509-3p That Targets CDK2, Rac1, and PIK3C2A

  • Yoon, Sena;Han, Eunji;Choi, Young-Chul;Kee, Honghwan;Jeong, Yongsu;Yoon, Jaeseung;Baek, Kwanghee
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.314-321
    • /
    • 2014
  • CDK2 is a key regulator of cell cycle progression. In this study, we screened for miRNAs targeting CDK2 using a luciferase-3'-untranslated region reporter assay. Among 11 hit miRNAs, miR-509-3p reduced CDK2 protein levels and significantly inhibited cancer cell growth. Microarray, Western blotting, and luciferase reporter analyses revealed additional targets of miR-509-3p, including Rac1 and PIK3C2A. Overexpression of miR-509-3p induced G1 cell-cycle arrest and inhibited colony formation and migration. RNAi experiments indicated that the growth-inhibitory effects of miR-509-3p may occur through down-regulation of CDK2, Rac1, and PIK3C2A. Targeting of multiple growth regulatory genes by miR-509-3p may contribute to effective anti-cancer therapy.

Insights into the Role of Follicular Helper T Cells in Autoimmunity

  • Park, Hong-Jai;Kim, Do-Hyun;Lim, Sang-Ho;Kim, Won-Ju;Youn, Jeehee;Choi, Youn-Soo;Choi, Je-Min
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • Follicular helper T ($T_{FH}$) cells are recently highlighted as their crucial role for humoral immunity to infection as well as their abnormal control to induce autoimmune disease. During an infection, na$\ddot{i}$ve T cells are differentiating into $T_{FH}$ cells which mediate memory B cells and long-lived plasma cells in germinal center (GC). $T_{FH}$ cells are characterized by their expression of master regulator, Bcl-6, and chemokine receptor, CXCR5, which are essential for the migration of T cells into the B cell follicle. Within the follicle, crosstalk occurs between B cells and $T_{FH}$ cells, leading to class switch recombination and affinity maturation. Various signaling molecules, including cytokines, surface molecules, and transcription factors are involved in $T_{FH}$ cell differentiation. IL-6 and IL-21 cytokine-mediated STAT signaling pathways, including STAT1 and STAT3, are crucial for inducing Bcl-6 expression and $T_{FH}$ cell differentiation. $T_{FH}$ cells express important surface molecules such as ICOS, PD-1, IL-21, BTLA, SAP and CD40L for mediating the interaction between T and B cells. Recently, two types of microRNA (miRNA) were found to be involved in the regulation of $T_{FH}$ cells. The miR-17-92 cluster induces Bcl-6 and $T_{FH}$ cell differentiation, whereas miR-10a negatively regulates Bcl-6 expression in T cells. In addition, follicular regulatory T ($T_{FR}$) cells are studied as thymus-derived $CXCR5^+PD-1^+Foxp3^+\;T_{reg}$ cells that play a significant role in limiting the GC response. Regulation of $T_{FH}$ cell differentiation and the GC reaction via miRNA and $T_{FR}$ cells could be important regulatory mechanisms for maintaining immune tolerance and preventing autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we review recent studies on the various factors that affect $T_{FH}$ cell differentiation, and the role of $T_{FH}$ cells in autoimmune diseases.

MicroRNA-214 Regulates the Acquired Resistance to Gefitinib via the PTEN/AKT Pathway in EGFR-mutant Cell Lines

  • Wang, Yong-Sheng;Wang, Yin-Hua;Xia, Hong-Ping;Zhou, Song-Wen;Schmid-Bindert, Gerald;Zhou, Cai-Cun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.255-260
    • /
    • 2012
  • Patients with non-small cell lung cancer (NSCLC) who have activating epidermal growth factor receptor (EGFR) mutations derive clinical benefit from treatment with EGFR-tyrosine kinase inhibitors ((EGFR-TKIs)-namely gefitinib and erlotinib. However, these patients eventually develop resistance to EGFR-TKIs. Despite the fact that this acquired resistance may be the result of a secondary mutation in the EGFR gene, such as T790M or amplification of the MET proto-oncogene, there are other mechanisms which need to be explored. MicroRNAs (miRs) are a class of small non-coding RNAs that play pivotal roles in tumorigenesis, tumor progression and chemo-resistance. In this study, we firstly successfully established a gefitinib resistant cell line-HCC827/GR, by exposing normal HCC827 cells (an NSCLC cell line with a 746E-750A in-frame deletion of EGFR gene) to increasing concentrations of gefitinib. Then, we found that miR-214 was significantly up-regulated in HCC827/GR. We also showed that miR-214 and PTEN were inversely expressed in HCC827/GR. Knockdown of miR-214 altered the expression of PTEN and p-AKT and re-sensitized HCC827/GR to gefitinib. Taken together, miR-214 may regulate the acquired resistance to gefitinib in HCC827 via PTEN/AKT signaling pathway. Suppression of miR-214 may thus reverse the acquired resistance to EGFR-TKIs therapy.

Profiling of Salivary Exosomal Micro RNAs in Burning Mouth Syndrome Patients

  • Kim, Kyun-Yo;Byun, Jin-Seok;Jung, Jae-Kwang;Choi, Jae-Kap
    • Journal of Oral Medicine and Pain
    • /
    • v.44 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • Purpose: The exact causes of burning mouth syndrome (BMS) is unclear so far. There are many studies to elucidate the relation between oral disease and genetic predisposition. In this study, we first tried to investigate salivary exosomal genetic components that could play an important role for diagnosing and elucidating the progression of BMS. Methods: We compared salivary exosomal micro RNAs (miRNAs) of BMS Patients to those of control using next generation sequencing (NGS). Unstimulated whole saliva from 15 patients with BMS and 10 control subjects were divided into two sets. Isolated exosomes and their total RNAs were subject to NGS for the screening of miRNAs. Results: There were up-regulated 10 exosomal miRNAs (hsa-miR-1273h-5p, hsa-miR-1273a, hsa-miR-1304-3p, hsa-miR-4449, hsa-miR-1285-3p, hsa-miR-6802-5p, hsa-miR-1268a, hsa-miR-1273d, hsa-miR-1273f, and hsa-miR-423-5p) and down-regulated 18 exosomal miRNAs (hsa-miR-27b-3p, hsa-miR-16-5p, hsa-miR-186-5p, hsa-miR-142-3p, hsa-miR-141-3p, hsa-miR-150-5p, hsa-miR-374a-5p, hsa-miR-93-5p, hsa-miR-29c-3p, hsa-miR-29a-3p, hsa-miR-148a-3p, hsa-miR-22-3p, hsa-miR-27a-3p, hsa-miR-424-5p, hsa-miR-19b-3p, hsa-miR-99a-5p, hsa-miR-548d-3p, and hsa-miR-19a-3p) in BMS patients comparing with those of control subjects. Conclusions: We show that there are 28 differential expression of miRNAs between the patients with BMS and those of control subjects. The specific function of indicated miRNAs should be further elucidated.

Torque and mechanical failure of orthodontic micro-implant influenced by implant design parameters (교정용 마이크로 임플란트의 디자인이 토오크와 파절강도에 미치는 영향)

  • Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.37 no.3 s.122
    • /
    • pp.171-181
    • /
    • 2007
  • Objective: The present study was aimed at an analytical formulation of the micro-implant related torque as a function of implant size, i.e. the diameter and length, screw size, and the bony resistance at the implant to bone interface. Methods: The resistance at the implant to cancellous bone interface $(S_{can})$ was assumed to be in the range of 1.0-2.5 MPa. Micro-implant model of Absoanchor (Dentos Inc. Daegu, Korea) was used in the course of the analysis. Results: The results showed that the torque was a strong function of diameter, length, and the screw height. As the diameter increased and as the screw size decreased, the torque index decreased. However the strength index was a different function of the implant and bone factors. The whole Absoanchor implant models were within the safe region when the resistance at the implant/cancellous bone $(=S_{can})$ was 1.0 or less. Conclusion: For bone with $S_{can}$ of 1.5 MPa, the cervical diameter should be greater than 1.5 mm if micro-implant models of 12 mm long are to be placed. For $S_{can}$ of 2.0 MPa, micro-implant models of larger cervical diameter than 1.5 mm were found to be safe only if the endosseous length was less than 8 mm.

miRNA-183 Suppresses Apoptosis and Promotes Proliferation in Esophageal Cancer by Targeting PDCD4

  • Yang, Miao;Liu, Ran;Li, Xiajun;Liao, Juan;Pu, Yuepu;Pan, Enchun;Yin, Lihong;Wang, Yi
    • Molecules and Cells
    • /
    • v.37 no.12
    • /
    • pp.873-880
    • /
    • 2014
  • In our previous study, miRNA-183, a miRNA in the miR-96-182-183 cluster, was significantly over-expressed in esophageal squamous cell carcinoma (ESCC). In the present study, we explored the oncogenic roles of miR-183 in ESCC by gain and loss of function analysis in an esophageal cancer cell line (EC9706). Genome-wide mRNA micro-array was applied to determine the genes that were regulated directly or indirectly by miR-183. 3'UTR luciferase reporter assay, RT-PCR, and Western blot were conducted to verify the target gene of miR-183. Cell culture results showed that miR-183 inhibited apoptosis (p < 0.05), enhanced cell proliferation (p < 0.05), and accelerated G1/S transition (p < 0.05). Moreover, the inhibitory effect of miR-183 on apoptosis was rescued when miR-183 was suppressed via miR-183 inhibitor (p < 0.05). Western blot analysis showed that the expression of programmed cell death 4 (PDCD4), which was predicted as the target gene of miR-183 by microarray profiling and bioinformatics predictions, decreased when miR-183 was over-expressed. The 3'UTR luciferase reporter assay confirmed that miR-183 directly regulated PDCD4 by binding to sequences in the 3'UTR of PDCD4. Pearson correlation analysis further confirmed the significant negative correlation between miR-183 and PDCD4 in both cell lines and in ESCC patients. Our data suggest that miR-183 might play an oncogenic role in ESCC by regulating PDCD4 expression.

지노믹트리 Microarray 토탈솔루션

  • O Tae-Jeong
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.46-55
    • /
    • 2006
  • (주)지노믹트리는 DNA 마이크로어레이 기술을 기반으로 하는 분자진단회사로서, 다음의 세가지 사업에 전력하고 있다. 첫째는 독창적이며 특화된 바이오마커 발굴기술 (MAGIC system)을 바탕으로 각종 암진단을 위한 바이오마커 개발연구 두 번째는 당사의 원천 기술인 다중동시검출 시스템을 이용한 질병 진단 시스템 및 증폭시스템 세 번째는 마이크로어레이 기술을 이용한 유전자 발현 분석, Array CGH, DNA 메틸레이션 분석 그리고 miRNA 검출 등의 지노믹스시대의 연구를 위한 토탈솔루션을 제공하고 있다. 지난 5년간의 마이크로어레이 기반기술을 이용한 자체연구 활동을 수행하면서 축적된 마이크로어레이 관련기술 노-하우들을 국내 마이크로어레이 연구자들에게 공급하기 위하여 노력하고 있다. 특히 당사의 지노믹서비스 부문은 유전자 발현 분석 솔루션 제공을 위해서 자체적으로 제작하여 공급하고 있는 human cDNA(17K/25K) 및 rat cDNA (5.0K) 마이크로어레이, Human (22K) 및 mouse (10K) 올리고뉴클레오타이드 마이크로 어레이 그리고 미생물 연구를 위한 대장균 (6K) 및 폐렴균 (2.2K) 올리고뉴클레오타이드 마이크로어레이 제공 및 이를 이용한 유전자 발현 분석 서비스를 제공하고 있다. 체적으로 제작되는 마이크로어레이 서비스는 2001년 도입한 ISO9001 품질인증시스템의 기반하에서 제작부터 생산까지의 엄격한 품질관리 과정을 거쳐서 고품질의 마이크로어레이를 이용한 분석서비스를 제공 하고 있다. 또한 고객요구형 서비스를 위하여 국외 유수의 마이크로어레이 회사 (Agilent, Microarray Inc, TIGR, Eurogentec 등)의 whole genome 기반의 마이크로어레이 제품을 이용한 분석서비스를 제공하고 있으며 마이크로어레이 실험을 위해서 필수적으로 이용되고 있는 시약 (labeling kit), 마이크로어레이 hybridization을 위한 hardware (hybridization chamber, hnay centrifuge)등을 자체적으로 개발하여 공급하고 있다. DNA copy number 측정을 위한 Array CGH 분석을 위해서는 자체적으로 제작공구하고 있는 human cDNA 마이크로어레이 (17K/25K) 그기고 rat (5.0K) 마이크로어레이를 이용한 분석서비스 및 whole genome 기반의 Agilent 올리고뉴클레오타이드 CGH 어레이 (44K, 35Kb resolution)를 이용한 분석서비스를 제공하고 있다. Epigenetic study를 하는 연구자들을 위한 메틸레이션 마이크로어레이 분석 서비스를 제공하고 있다. 기존분석법인 Bisulfite 처리기반의 분석이 아닌 enzyme digestion후 PCR 증폭방법을 이용한 분석방법을 이용함으로써, bisulfite 처리에 의한 DNA 손실문제를 최소화 하였다. 현재 50개의 문헌을 통해 잘 보고된 메틸레이션 유전자들에 대한 분석서비스를 제공하고 있으며, 지속적으로 표적컨텐츠의 숫자를 증가시킬 예정이다. 최근 많은 연구자들의 관심을 끌고 있는 micro RNA 검출을 위한 DNA 마이크로어레이 서비스를 제공할 예정이다 (2006년 3월 출시). 현재 까지 알려진 약 320개의 모든 miRNA를 탑재하고 있는 소형 DNA 마이크로어레이를 이용한 분석서비스로서 1장의 마이크로어레이 실험을 통하여 알려진 모든 miRNA의 비교분석이 가능하다. 마이크로어레이 실험 뿐만 아니라 data 분석을 위한 software도 상당히 중요한 비중을 차지하고 있다 이를 위하여 (주)지노믹트리는 Agilent에서 개발한 GeneSpring GX (유전자 발현 분석), Signet (마이크로어레이 database) 및 GeneSpring GT (SNP 분석)를 공급하고 있다. 통계적인 기반 지식의 없은 일반 user들을 위한 간편하면서도 종합적인 기능을 포함하고 있는 우수한 프로그램으로 이미 국제적으로 많은 인정을 받고 있다. (주)지노믹트리는 국내외 많은 연구자들의 경제적, 시간적 연구여건을 고려한 마이크로어레이 토탈솔루션을 제공하고 있으며, 실험 분석에서 data 마이닝 그리고 마이크로어레이 실험 디자인에 이르는 토탈솔루션을 제공하고 있다.

  • PDF

Curcumin Reorganizes miRNA Expression in a Mouse Model of Liver Fibrosis

  • Hassan, Zeinab Korany;Al-Olayan, Ebtisam M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5405-5408
    • /
    • 2012
  • Curcumin (CM), a biphenyl compound, possesses anti-inflammatory, antioxidant and antimicrobial activity. MicroRNAs (miRNAs) are small noncoding RNAs which regulate gene expression and the molecular mechanisms of several biological processes. Liver fibrosis is a major cause of hepatic dysfunction and cancer and there are few effective therapies emphasizing the need for new approaches to control. The present study was conducted to investigate the effect of curcumin (CM) on liver fibrosis through modulating the expression level of miRNAs (199 and 200), the main miRNAs associated with liver fibrosis. Induction of liver fibrosis by carbon tetrachloride ($CCL_4$) was confirmed by histopathological examination. Mice were divided into 3 groups: group 1 were i.p injected with 10% $CCL_4$ twice weekly for 4 weeks and then once a week for the next 4 weeks followed by 4 weeks with olive oil only. Group 2 were i.p injected with 10% $CCL_4$ twice weekly for 4 weeks and then once a week for the next 4 weeks followed by curcumin (5 mg/mouse/day) once daily for the next 4 weeks. The third group was injected with olive oil. The expression level of miR-199 and miR-200 and some of their targeted genes were measured by real time PCR. miRNA (199 and 200) levels were significantly elevated in liver fibrotic tissues compared to control groups. Curcumin was significantly returned the expression levels of mir-199 and -200 with their associated target gene nearly to their normal levels. This is the first study that highlighted the effect of curcumin on liver fibrosis through regulation of miRNAs.

Effects of cementless fixation of implant prosthesis: A finite element study

  • Lee, Hyeonjong;Park, Soyeon;Kwon, Kung-Rock;Noh, Gunwoo
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.341-349
    • /
    • 2019
  • PURPOSE. A novel retentive type of implant prosthesis that does not require the use of cement or screw holes has been introduced; however, there are few reports examining the biomechanical aspects of this novel implant. This study aimed to evaluate the biomechanical features of cementless fixation (CLF) implant prostheses. MATERIALS AND METHODS. The test groups of three variations of CLF implant prostheses and a control group of conventional cement-retained (CR) prosthesis were designed three-dimensionally for finite element analysis. The test groups were divided according to the abutment shape and the relining strategy on the inner surface of the implant crown as follows; resin-air hole-full (RAF), resin-air hole (RA), and resin-no air hole (RNA). The von Mises stress and principal stress were used to evaluate the stress values and distributions of the implant components. Contact open values were calculated to analyze the gap formation of the contact surfaces at the abutment-resin and abutment-implant interfaces. The micro-strain values were evaluated for the surrounding bone. RESULTS. Values reflecting the maximum stress on the abutment were as follows (in MPa): RAF, 25.6; RA, 23.4; RNA, 20.0; and CR, 15.8. The value of gap formation was measured from 0.88 to 1.19 ㎛ at the abutment-resin interface and 24.4 to 24.7 ㎛ at the abutment-implant interface. The strain distribution was similar in all cases. CONCLUSION. CLF had no disadvantages in terms of the biomechanical features compared with conventional CR implant prosthesis and could be successfully applied for implant prosthesis.