• Title/Summary/Keyword: Micro-particle penetration

Search Result 11, Processing Time 0.024 seconds

Development of the Experimental Apparatus to Measure a Pore Size of Micro-pore Fabrics Used for a Bedding to Block the House Dust Mite Allergen (집먼지 진드기 알레르겐 차단 침구에 사용되는 극세 공극 직물의 공극 측정을 위한 입자 투과 실험 장치의 개발)

  • Kim, Donhue
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.557-563
    • /
    • 2022
  • In order to measure the allergen penetration of micropore fabrics, it is necessary to develop a convenient and appropriate experimental method for measuring a pore size of micropore fabrics. In this study, a simple and economical experimental apparatus was developed for the analysis of the pore size of micropore fabrics by measuring the weight reduction rate. In addition, the allergen blocking properties was evaluated by measuring the pore sizes of various fabrics. According to this study, the size of the pores of the microporous fabric could be obtained by measuring the weight reduction rates. In addition, higher weight reduction rate was obtained as the suction pressure passing through the particle permeation device decreased and the suction time was increased. It is expected that the developed experimental method and apparatus can be utilized as an experimental standard for quality control methods to verify the effectiveness of micropore fabrics used for house dust mite blocking bedding.

Small Angle X-ray Scattering Studies on Deformation Behavior of Rubber Toughened Polycarbonate (소각 X-선 산란을 이용한 고무입자로 강인화된 폴리카보네이트의 변형에 관한 연구)

  • Cho, Kilwon;Choi, Jaeseung;Yang, Jaeho;Kang, Byoung Il
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.19-26
    • /
    • 2002
  • In order to study the toughening mechanism of rubber modified polycarbonate, the sequence of development of micro-voids was investigated by real-time small angle X-ray scattering with Synchrotron radiation (SR-SAXS). The used test method was wedge test. The scattering intensity increases with increasing penetration depth of wedge, i.e. applied strain. The increase is due to the micro-void formation during deformation. This micro-void was uniformly developed in matrix and was different from large-void due to internal cavitation of rubber particle and/or debonding between rubber particle and polycarbonate matrix. The micro-void was developed at the critical strain and the radius of micro-void is around $600{\AA}$. Above the critical strain the size of micro-void remains almost constant with increasing applied strain. However, the population of micro-void increased with applied strain.

  • PDF

Measurement of Brownian motion of nanoparticles in suspension using a network-based PTV technique

  • Banerjee A.;Choi C. K.;Kihm K. D.;Takagi T.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.91-110
    • /
    • 2004
  • A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.

  • PDF

Evaluation of Fiber and Blast Furnace Slag Concrete Chloride Penetration through Computer Simulation

  • Kim, Dong-Hun;Petia, Staneva;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.379-386
    • /
    • 2011
  • Durability of concrete is an important issue, and one of the most critical aspects affecting durability is chloride diffusivity. Factors such as water.cement ratio, degree of hydration, volume of the aggregates and their particle size distribution have a significant effect on chloride diffusivity in concrete. The use of polypropylene fibers(particularly very fine and well dispersed micro fibers) or mineral additives has been shown to cause a reduction in concrete's permeability. The main objective of this study is to evaluate the manner in which the inclusion of fiber(in terms of volume and size) and blast furnace slag(BFS) (in terms of volume replacement of cement) influence the chloride diffusivity in concrete by applying 3D computer modeling for the composite structure and performing a simulation of the chloride penetration. The modeled parameters, i.e. chloride diffusivity in concrete, are compared to the experimental data obtained in a parallel chloride migration test experiment with the same concrete mixtures. A good agreement of the same order is found between multi.scale microstructure model, and through this chloride diffusivity in concrete was predicted with results similar to those experimentally measured.

The Statistical Hypothesis Verification to Influence of Addition of Metakaolin and Silica Fume on Compressive Strength and Chloride Ion Penetration of High Strength Concrete (메타카올린 및 실리카퓸의 혼입이 고강도 콘크리트의 압축강도와 염소이온 투과에 미치는 영향에 관한 통계적 가설검증)

  • Min, Jeong Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.215-225
    • /
    • 2011
  • Metakaolin is a dehydroxylated form of the clay mineral kaolinite. Rocks that are rich in kaolinite are known as china clay or kaolin, traditionally used in the manufacture of porcelain. The particle size of metakaolin is smaller than cement particles, but not as fine as silica fume. This paper investigates the effect of the concrete containing metakaolin as a mineral admixture on the compressive strength and resistance properties to chloride ion penetration. In this study, the experiment was carried out to investigate and analyze the influence of replacement ratio of metakaolin and micro silica fume on the compressive strength and chlorine ion penetration resistance of concrete. All levels were water/binder ratio 30%, replacement ratio of metakaolin and silica fume were 0, 5, 10, 15, 20% respectively. The compressive strength of concrete using metakaolin tends to increase, as the replacement ratio increases but the chlorine ion penetration resistance was not so as lager as silica fume concrete. Therefore, the optimum mixing ratio of metakaoline to satisfy a properties of compressive strength and chlorine ion penetration resistance was was approximately10%.

Development of Bio-ballistic Device for Laser Ablation-induced Drug Delivery

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Jeung, In-Seuk;Yoh, Jack J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.68-71
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for a number of years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a micro particle acceleration system based on laser ablation that can be integrated with endoscopic surgical techniques. A layer of micro particles is deposited on the surface of a thin metal foil. The rear side of the foil is irradiated with a laser beam, which generates a shockwave that travels through the foil. When the shockwave reaches the end of the foil, it is reflected as an expansion wave and causes instantaneous deformation of the foil in the opposite direction. Due to this sudden deformation, the microparticles are ejected from the foil at very high speeds, and therefore have sufficient momentum to penetrate soft body tissues. We have demonstrated this by successfully delivering cobalt particles $3\;{\mu}m$ in diameter into gelatin models that represent soft tissue with remarkable penetration depth.

Development of shock wave induced microparticle acceleration system based on laser ablation and its application on drug delivery (충격파를 이용한 레이저 어블레이션 기반의 마이크로 입자 가속 시스템 개발 및 약물전달 응용)

  • Choi, Ji-Hee;Gojani, Ardian B.;Lee, Hyun-Hee;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.587-593
    • /
    • 2008
  • Transdermal and topical drug delivery with minimal tissue damage has been an area of vigorous research for years. Our research team has initiated the development of an effective method for delivering drug particles across the skin (transdermal) for systemic circulation, and to localized (topical) areas. The device consists of a laser ablation based micro-particle acceleration system that can be integrated with endoscopic surgical techniques. We have successfully delivered 3μm size cobalt particles into gelatin models that represent soft tissue with remarkable penetration depth.

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.

Anti-Melanogenic Potentials of Nanoparticles from Calli of Resveratrol-Enriched Rice against UVB-Induced Hyperpigmentation in Guinea Pig Skin

  • Lee, Taek Hwan;Kang, Ji Hee;Seo, Jae Ok;Baek, So-Hyeon;Moh, Sang Hyun;Chae, Jae Kyoung;Park, Yong Un;Ko, Young Tag;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • We already reported that genetically engineered resveratrol-enriched rice (RR) showed to down-regulate skin melanogenesis. To be developed to increase the bioactivity of RR using calli from plants, RR was adopted for mass production using plant tissue culture technologies. In addition, high-pressure homogenization (HPH) was used to increase the biocompatibility and penetration of the calli from RR into the skin. We aimed to develop anti-melanogenic agents incorporating calli of RR (cRR) and nanoparticles by high-pressure homogenization, examining the synergistic effects on the inhibition of UVB-induced hyperpigmentation. Depigmentation was observed following topical application of micro-cRR, nano-calli of normal rice (cNR), and nano-cRR to ultraviolet B (UVB)-stimulated hyperpigmented guinea pig dorsal skin. Colorimetric analysis, tyrosinase immunostaining, and Fontana-Masson staining for UVB-promoted melanin were performed. Nano-cRR inhibited changes in the melanin color index caused by UVB-promoted hyperpigmentation, and demonstrated stronger anti-melanogenic potential than micro-cRR. In epidermal skin, nano-cRR repressed UVB-promoted melanin granules, thereby suppressing hyperpigmentation. The UVB-enhanced, highly expressed tyrosinase in the basal layer of the epidermis was inhibited by nano-cRR more prominently than by micro-cRR and nano-cNR. The anti-melanogenic potency of nano-cRR also depended on pH and particle size. Nano-cRR shows promising potential to regulate skin pigmentation following UVB exposure.

Effect of steel fibres and nano silica on fracture properties of medium strength concrete

  • Murthy, A. Ramachandra;Ganesh, P.
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.143-150
    • /
    • 2019
  • This study presents the fracture properties of nano modified medium strength concrete (MSC). The nano particle used in this study is nano silica which replaces cement about 1 and 2% by weight, and the micro steel fibers are added about 0.4% volume of concrete. In addition to fracture properties, mechanical properties, namely, compressive strength, split tensile strength, and flexural strength of nano modified MSC are studied. To ensure the durability of the MSC, durability studies such as rapid chloride penetration test, sorptivity test, and water absorption test have been carried out for the nano modified MSC. From the study, it is observed that significant performance improvement in nano modified MSC in terms of strength and durability which could be attributed due to the addition pozzolanic reaction and the filler effect of nano silica. The incorporation of nano silica increases the fracture energy about 30% for mix without nano silica. Also, size independent fracture energy is arrived using two popular methods, namely, RILEM work of fracture method with $P-{\delta}$ tail correction and boundary effect method. Both the methods resulted in nearly the same size-independent $G_F$ irrespective of the notch to depth ratio of the same specimen. This shows evidence that either of the two procedures could be used in practice for analysis of cracked concrete structures.