• 제목/요약/키워드: Micro-mechanics

검색결과 374건 처리시간 0.018초

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.

Vibration analysis of micro composite thin beam based on modified couple stress

  • Ehyaei, Javad;Akbarizadeh, M. Reza
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.403-411
    • /
    • 2017
  • In this article, analytical solution for free vibration of micro composite laminated beam on elastic medium based on modified couple stress are presented. The surrounding elastic medium is modeled as the Winkler elastic foundation. The governing equations and boundary conditions are obtained by using the principle of minimum potential energy for EulerBernoulli beam. For investigating the effect of different parameters including material length scale, beam thickness, some numerical results on different cross ply laminated beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are presented on elastic medium. Free vibration analysis of a simply supported beam is considered utilizing the Fourier series. Also, the fundamental frequency is obtained using the principle of Hamilton for four types of cross ply laminations with hinged-hinged boundary conditions and different beam theories. The fundamental frequency for different thin beam theories are investigated by increasing the slenderness ratio and various foundation coefficients. The results prove that the modified couple stress theory increases the natural frequency under the various foundation for free vibration of composite laminated micro beams.

Effects of graphene platelet presence and porosity distribution on the vibration of piezoelectric sinusoidal sandwich beam

  • Mojtaba Mehrabi;Keivan Torabi
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.87-102
    • /
    • 2024
  • In recent years, the focus on vibration analysis of multilayer smart structures has attracted considerable attention in many engineering applications. In this work, vibration analysis of a three-layer microporous beam with a core amplified by a composite material reinforced with graphene platelets and two piezoelectric thin films is discussed. It is assumed that piezoelectric layers with a thickness of 0.01 core are very thin and the properties of the matrix and reinforcement vary in the thickness directions. The governing equations of motion are obtained using an energy approach and the method of numerical differential quadrature to solve them. The results of this work are compared to other research and there is good agreement between them. The influences of the volumetric weight fraction of graphene wafers, different graphene platelets distributions, porosity distribution, mass scale parameters and thin ratio of graphene platelets take into account the natural dimensionless frequencies of the micro-beam. The results of this study show that the symmetric distribution of graphene platelets based on the symmetric porosity distribution has a great influence on the natural frequencies without basic dimension of the micro-beam, while the shape ratios of graphene platelets do not have a significant influence on natural frequency changes.

마이크로 드릴비트의 워터젯 세척 로봇시스템의 공정 시뮬레이션 분석에 관한 연구 (A Study on Process Simulation Analysis of the Water Jet Cleaning Robot System for Micro Drill-bits)

  • 국연호;박상록;박기진;최현진
    • 한국CDE학회논문집
    • /
    • 제20권3호
    • /
    • pp.291-297
    • /
    • 2015
  • A water jet cleaning robot system for micro drill bits is to refurbish micro drill bits used for the PCB manufacturing process. It can refurbish drill bits with the minimum diameter of ${\phi}0.15{\sim}0.075mm$ of which the total quantity have been discarded before. Micro drill bits with the minimum diameter of ${\phi}0.075mm$ can be cleaned by applying the water jet cleaning robot system out of the manual ultrasonic cleaning in the past for the cleaning equipment as the initial process in refurbishing. This study analyzed problems, while applying the apparatus mechanism for the workability such as the robot traces of Transfer Robot I and II, drill bit loading and unloading, and cleaning tasks in the water jet cleaning robot system in an effort to carry out simulations. In addition, the cleaning work process was optimized as the work process was verified in advance and the production quantity was analyzed through simulations.

Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM

  • Mohammadimehr, M.;Monajemi, Ahmad A.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.1029-1062
    • /
    • 2016
  • In this research, the nonlinear free vibration analysis of boron-nitride micro ribbon (BNMR) on the Pasternak elastic foundation under electrical, mechanical and thermal loadings using modified strain gradient theory (MSGT) is studied. Employing the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear geometry theory, the nonlinear equations of motion for the graphene micro ribbon (GMR) using Euler-Bernoulli beam model with considering attached mass and size effects based on Hamilton's principle is obtained. These equations are converted into the nonlinear ordinary differential equations by elimination of the time variable using Kantorovich time-averaging method. To determine nonlinear frequency of GMR under various boundary conditions, and considering mass effect, differential quadrature element method (DQEM) is used. Based on modified strain MSGT, the results of the current model are compared with the obtained results by classical and modified couple stress theories (CT and MCST). Furthermore, the effect of various parameters such as material length scale parameter, attached mass, temperature change, piezoelectric coefficient, two parameters of elastic foundations on the natural frequencies of BNMR is investigated. The results show that for all boundary conditions, by increasing the mass intensity in a fixed position, the linear and nonlinear natural frequency of the GMR reduces. In addition, with increasing of material length scale parameter, the frequency ratio decreases. This results can be used to design and control nano/micro devices and nano electronics to avoid resonance phenomenon.

Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings

  • Mohammadimehr, Mehdi;Meskini, Mohammad
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.69-82
    • /
    • 2020
  • In this study, the free and forced vibration analysis of micro sandwich plate with porous core layer and magneto-electric face sheets based on modified couple stress theory and first order shear deformation theory under simply supported boundary conditions is illustrated. It is noted that the core layer is composed from balsa wood and also piezo magneto-electric facesheets are made of BiTiO3-CoFe2O4. Using Hamilton's principle, the equations of motion for micro sandwich plate are obtained. Also, the Navier's method for simply support boundary condition is used to solve these equations. The effects of applied voltage, magnetic field, length to width ratio, thickness of porous to micro plate thickness ratio, type of porous, coefficient of porous on the frequency ratio are investigated. The numerical results indicate that with increasing of the porous coefficient, the non-dimensional frequency increases. Also, with an increase in the electric potential, the non-dimensional frequency decreases, while and with increasing of the magnetic potential is vice versa.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.

콘크리트 탄성계수의 미시역학적 추정 (Evaluation of Elastic Modulus of Concrete Using Micro-mechanics Models)

  • 유동우;조호진;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.345-349
    • /
    • 1995
  • Although heterogeneous materials consisted of micro-constituents are complicated, it is possible to evaulate effective elastic moduli by using micro-mechanics models. In order to evaluate effective elastic moduli of concrete, all aggregates in a representative volume element(RVE) are assumed spherical and randomly distributed. A dilute distribution of inclusions is considered first, and the corresponding overall elastic moduli of the RVE are estimated. Then, the self-consistent method is used in order to take into account the interaction effects. The elastic moduli of concrete are calculated using the models and compared with those of experiment for different volume fractions of the aggregates and elastic moduli of the mortar and the aggregates.

  • PDF

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제14권5호
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

표면적분법을 이용한 콘크리트 댐의 균열 해석 (Crack Analysis of Concrete Gravity Dam Using Surface Integral Method)

  • 진치섭;이영호;손기석
    • 콘크리트학회논문집
    • /
    • 제12권3호
    • /
    • pp.31-37
    • /
    • 2000
  • When a crack is produced in a concrete structure, a micro crack zone of fracture process zone (FPZ) appears at the crack tip. To investigate the behaviour of this the micro crack zone, nonlinear fracture mechanics (NLFM) must be applied. However, when a massive concrete structure such as a concrete gravity dam is considered, the micro crack zone can be neglected and the structure can be assumed to have linear elastic fracture mechanics (LEFM) behaviour. This study is divided into two main topics : (1) Calculating stress intensity factor (SIF) at the crack tip by surface integral method and (2) Investigating the propagation of the initial crack. If the initial crack propagates, the angle of the propagation is calculated by using maximum circumferential tensile strength theory. This study, also, contains the effects of body forces and water pressures on the crack face.