• Title/Summary/Keyword: Micro-mechanics

Search Result 374, Processing Time 0.026 seconds

ED-FEM multi-scale computation procedure for localized failure

  • Rukavina, Ivan;Ibrahimbegovic, Adnan;Do, Xuan Nam;Markovic, Damijan
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.111-127
    • /
    • 2019
  • In this paper, we present a 2D multi-scale coupling computation procedure for localized failure. When modeling the behavior of a structure by a multi-scale method, the macro-scale is used to describe the homogenized response of the structure, and the micro-scale to describe the details of the behavior on the smaller scale of the material where some inelastic mechanisms, like damage or plasticity, can be defined. The micro-scale mesh is defined for each multi-scale element in a way to fit entirely inside it. The two scales are coupled by imposing the constraint on the displacement field over their interface. An embedded discontinuity is implemented in the macro-scale element to capture the softening behavior happening on the micro-scale. The computation is performed using the operator split solution procedure on both scales.

An Experimental Study on the Dynamic Characteristics of Rubber Isolator (실험에 의한 방진고무의 동특성에 관한 연구)

  • Kim, W.D.;Kim, K.S.;Kwon, J.D.;Woo, C.S.
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.183-191
    • /
    • 2002
  • Rubber materials with excellent damping property are widely applied for vibration isolators. The dynamic characteristics of the rubber materials for vibration isolators were investigated. Dynamic tests for rubber materials with five different hardness were performed. In dynamic tests for test specimen, non-resonance method was used to obtain the dynamic storage modulus and loss factor. Moreover, the effect of dynamic vibration frequency, strain amplitude and temperature were investigated. As results, the storage modulus and loss factor generally increase when the hardness and frequency increase, and the glass transition temperature is $-50^{\circ}C$ by a large change in modulus and loss factor.

Chlorine effect on ion migration for PCBs under temperature-humidity bias test (고온고습 전원인가 시험에서 Cl에 의한 이온 마이그레이션 불량)

  • Huh, Seok-Hwan;Shin, An-Seob
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • By the trends of electronic package to be more integrative, the fine Cu trace pitch of organic PCB is required to be a robust design. In this study, the short circuit failure mechanism of PCB with a Cl element under the Temperature humidity bias test ($85^{\circ}C$/85%RH/3.5V) was examined by micro-structural study. A focused ion beam (FIB) and an electron probe micro analysis (EPMA) were used to polish the cross sections to reveal details of the microstructure of the failure mode. It is found that $CuCl_x$ were formed and grown on Cu trace during the $170^{\circ}C$/3hrs and that $CuCl_x$ was decomposed into Cu dendrite and $Cl_2$ gas during the $85^{\circ}C$/85%RH/3.5V. It is suggested that Cu dendrites formed on Cu trace lead to a short circuit failure between a pair of Cu traces.

Study on the Frictional Characteristics of Micro-particles for Tribological Application (미세입자의 트라이볼로지적 응용을 위한 마찰특성 고찰)

  • Sung, In-Ha;Han, Hung-Gu;Kong, Ho-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Interests in micro/nano-particles have been greatly increasing due to their wide applications in various fields such as environmental and medical sciences as well as engineering. In order to obtain a fundamental understanding of the tribological characteristics at particle-surface contact interface, frictional behaviors according to load/pressure and materials were obtained by using atomic force microscope(AFM) cantilevers with different stiffnesses and tips. Lateral contact stiffnesses were observed in various tip-surface contact situations. Experimental results show that stick-slip friction behavior occurs even when the colloidal probes with a particle of a few micrometers in diameter, which have a relatively large contact area and lack a well-shaped apex, were used. This indicates that atomic stick-slip friction may be a more common phenomenon than it is currently thought to be. Also, experimental results were investigated by considering the competition between the stiffness of the interatomic potential across the interface and the elastic stiffnesses of the contacting materials and the force sensor itself.

Implantable Drug Delivery Systems-Design Process

  • Vincent, Croquet;Benolt, Raucent;Onori, Mauro
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • The market of programmable implantable pumps has bound to a monopolistic situation, inducing high device costs, thus making them inaccessible to most patients. Micro-mechanical and medical innovations allow improved performances by reducing the dimensions. This affects the consumption and weight, and, by reducing the number of parts, the cost is also affected. This paper presents the procedure followed to design an innovative implantable drug delivery system. This drug delivery system consists of a low flow pump which shall be implanted in the human body to relieve pain. In comparison to classical known solutions, this pump presents many advantages of high interest in both medical and mechanical terms. The first section of the article describes the specifications which would characterize a perfect delivery system from every points of view. This concerns shape, medication, flow, autonomy, biocompatibility, security and sterilization ability. Afterwards, an overview of existing systems is proposed in a decisional tree. Positive displacement motorized pumps are classified into three main groups: the continuous movement group, the fractioned translation group and the alternative movement group. These systems are described and the different problems which are specific to these mechanisms are presented. Since none of them fully satisfy the specifications, an innovation is justified.. The decisional tree is therefore extended by adding new principles: fractioned refilling and fractioned injection within the fractioned translation movement group, spider guiding system within the alternative translation movement group, rotational bearing guided device and notch hinge guided device in the alternative rotation movement group.

Simulations of spacing of localized zones in reinforced concrete beams using elasto-plasticity and damage mechanics with non-local softening

  • Marzec, I.;Bobinski, J.;Tejchman, J
    • Computers and Concrete
    • /
    • v.4 no.5
    • /
    • pp.377-402
    • /
    • 2007
  • The paper presents quasi-static plane strain FE-simulations of strain localization in reinforced concrete beams without stirrups. The material was modeled with two different isotropic continuum crack models: an elasto-plastic and a damage one. In case of elasto-plasticity, linear Drucker-Prager criterion with a non-associated flow rule was defined in the compressive regime and a Rankine criterion with an associated flow rule was adopted in the tensile regime. In the case of a damage model, the degradation of the material due to micro-cracking was described with a single scalar damage parameter. To ensure the mesh-independence and to capture size effects, both criteria were enhanced in a softening regime by nonlocal terms. Thus, a characteristic length of micro-structure was included. The effect of a characteristic length, reinforcement ratio, bond-slip stiffness, fracture energy and beam size on strain localization was investigated. The numerical results with reinforced concrete beams were quantitatively compared with corresponding laboratory tests by Walraven (1978).

Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC

  • Safari, Mohammad;Mohammadimehr, Mehdi;Ashrafi, Hossein
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2021
  • In this article, free vibration behavior of electro-magneto-thermo sandwich Timoshenko beam made of porous core and Graphene Platelet Reinforced Composite (GPLRC) in a thermal environment is investigated. The governing equations of motion are derived by using the modified strain gradient theory for micro structures and Hamilton's principle. The magneto electro are under linear function along the thickness that contains magnetic and electric constant potentials and a cosine function. The effects of material length scale parameters, temperature change, various distributions of porous, different distributions of graphene platelets and thickness ratio on the natural frequency of Timoshenko beam are analyzed. The results show that an increase in aspect ratio, the temperature change, and the thickness of GPL leads to reduce the natural frequency; while vice versa for porous coefficient, volume fractions and length of GPL. Moreover, the effect of different size-dependent theories such as CT, MCST and MSGT on the natural frequency is investigated. It reveals that MSGT and CT have most and lowest values of natural frequency, respectively, because MSGT leads to increase the stiffness of micro Timoshenko sandwich beam by considering three material length scale parameters. It is seen that by increasing porosity coefficient, the natural frequency increases because both stiffness and mass matrices decreases, but the effect of reduction of mass matrix is more than stiffness matrix. Considering the piezo magneto-electric layers lead to enhance the stiffness of a micro beam, thus the natural frequency increases. It can be seen that with increasing of the value of WGPL, the stiffness of microbeam increases. As a result, the value of natural frequency enhances. It is shown that in hc/h = 0.7, the natural frequency for WGPL = 0.05 is 8% and 14% less than its for WGPL = 0.06 and WGPL = 0.07, respectively. The results show that with an increment in the length and width of GPLs, the natural frequency increases because the stiffness of micro structures enhances and vice versa for thickness of GPLs. It can be seen that the natural frequency for aGPL = 25 ㎛ and hc/h = 0.6 is 0.3% and 1% more than the one for aGPL = 5 ㎛ and aGPL = 1 ㎛, respectively.

Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 용접구조물의 수치피로시험기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Yoo, Byung-Moon;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

Instability analysis of viscoelastic CNTs surrounded by a thermo-elastic foundation

  • Amir, Saeed;Khani, Mehdi;Shajari, Ali Reza;Dashti, Pedram
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Static and dynamic instability of a viscoelastic carbon nanotube (CNT) embedded on a thermo-elastic foundation are investigated, in this research. The CNT is modeled based on Euler-Bernoulli beam (EBB) and nonlocal small scale elasticity theory is utilized to analyze the structure. Governing equations of the system are derived using Hamilton's principle and differential quadrature (DQ) method is applied to solve the partial differential equations. The effects of variable axial load and diverse boundary conditions on static/vibration instability are studied. To verify the result of the DQ method, the Galerkin weighted residual approach is used for the instability analysis. It is observed appropriate agreement for results of two different solution methods and satisfactory accuracy with those obtained in prior studies. The results of this work could be useful for engineers and designers in order to produce and design nano/micro structures in thermo-elastic medium.

A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer (Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Kim, Min-Ju;Park, Chang-Sik;Kong, Jin-Ho;Heo, Cheol-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.