• Title/Summary/Keyword: Micro-genetic Simulated Annealing

Search Result 4, Processing Time 0.022 seconds

Optimum Design of Sandwich Panel Using Hybrid Metaheuristics Approach

  • Kim, Yun-Young;Cho, Min-Cheol;Park, Je-Woong;Gotoh, Koji;Toyosada, Masahiro
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.38-46
    • /
    • 2003
  • Aim of this article is to propose Micro-Genetic Simulated Annealing (${\mu}GSA$) as a hybrid metaheuristics approach to find the global optimum of nonlinear optimisation problems. This approach combines the features of modern metaheuristics such as micro-genetic algorithm (${\mu}GAs$) and simulated annealing (SA) with the general robustness of parallel exploration and asymptotic convergence, respectively. Therefore, ${\mu}GSA$ approach can help in avoiding the premature convergence and can search for better global solution, because of its wide spread applicability, global perspective and inherent parallelism. For the superior performance of the ${\mu}GSA$, the five well-know benchmark test functions that were tested and compared with the two global optimisation approaches: scatter search (SS) and hybrid scatter genetic tabu (HSGT) approach. A practical application to structural sandwich panel is also examined by optimism the weight function. From the simulation results, it has been concluded that the proposed ${\mu}GSA$ approach is an effective optimisation tool for soloing continuous nonlinear global optimisation problems in suitable computational time frame.

Development and Application of Metropolis Genetic Algorithm for the Structural Design Optimization (구조물의 설계 최적화를 위한 메트로폴리스 유전알고리즘의 개발 및 적용)

  • 박균빈;류연선;김정태;조현만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.115-122
    • /
    • 2003
  • A Metropolis genetic algorithm(MGA) is developed and applied for the structural design optimization. In MGA favorable features of Metropolis algorithm in simulated annealing(SA) are incorporated in simple genetic algorithm(SGA), so that the MGA alleviates the disadvantage of finding imprecise solution in SGA and time-consuming computation in SA. Performances of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro genetic algorithm(μGA), and Kirkpatrick's SA. Typical numerical examples are used to evaluate the favorable features and applicability of MGA From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA is a reliable and efficient tool for structural design optimization.

  • PDF

Development and Efficiency Evaluation of Metropolis GA for the Structural Optimization (구조 최적화를 위한 Metropolis 유전자 알고리즘을 개발과 호율성 평가)

  • Park Kyun-Bin;Kim Jeong-Tae;Na Won-Bae;Ryu Yeon-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.27-37
    • /
    • 2006
  • A Metropolis genetic algorithm (MGA) is developed and applied for the structural design optimization. In MGA, favorable features of Metropolis criterion of simulated annealing (SA) are incorporated in the reproduction operations of simple genetic algorithm (SGA). This way, the MGA maintains the wide varieties of individuals and preserves the potential genetic information of early generations. Consequently, the proposed MGA alleviates the disadvantages of premature convergence to a local optimum in SGA and time consuming computation for the precise global optimum in SA. Performances and applicability of MGA are compared with those of conventional algorithms such as Holland's SGA, Krishnakumar's micro GA, and Kirkpatrick's SA. Typical numerical examples are used to evaluate the computational performances, the favorable features and applicability of MGA. The effects of population sizes and maximum generations are also evaluated for the performance reliability and robustness of MGA. From the theoretical evaluation and numerical experience, it is concluded that the proposed MGA Is a reliable and efficient tool for structural design optimization.

Performance Evaluation and Parametric Study of MGA in the Solution of Mathematical Optimization Problems (수학적 최적화 문제를 이용한 MGA의 성능평가 및 매개변수 연구)

  • Cho, Hyun-Man;Lee, Hyun-Jin;Ryu, Yeon-Sun;Kim, Jeong-Tae;Na, Won-Bae;Lim, Dong-Joo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.416-421
    • /
    • 2008
  • A Metropolis genetic algorithm (MGA) is a newly-developed hybrid algorithm combining simple genetic algorithm (SGA) and simulated annealing (SA). In the algorithm, favorable features of Metropolis criterion of SA are incorporated in the reproduction operations of SGA. This way, MGA alleviates the disadvantages of finding imprecise solution in SGA and time-consuming computation in SA. It has been successfully applied and the efficiency has been verified for the practical structural design optimization. However, applicability of MGA for the wider range of problems should be rigorously proved through the solution of mathematical optimization problems. Thus, performances of MGA for the typical mathematical problems are investigated and compared with those of conventional algorithms such as SGA, micro genetic algorithm (${\mu}GA$), and SA. And, for better application of MGA, the effects of acceptance level are also presented. From numerical Study, it is again verified that MGA is more efficient and robust than SA, SGA and ${\mu}GA$ in the solution of mathematical optimization problems having various features.

  • PDF