• Title/Summary/Keyword: Micro-electron diffraction

Search Result 160, Processing Time 0.022 seconds

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation

  • Meng, Ze-Da;Cho, Sun-Bok;Ghosh, Trisha;Zhu, Lei;Choi, Jong-Geun;Park, Chong-Yeon;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.

Synthesis and Characterization of Sm2O3 Doped CeO2 Nanopowder by Reverse Micelle Processing (역마이셀을 이용한 Sm2O3 도핑 CeO2 나노분말의 합성 및 특성)

  • Kim, Jun-Seop;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.207-210
    • /
    • 2012
  • The preparation of $Sm_2O_3$ doped $CeO_2$ in Igepal CO-520/cyclohexane reverse micelle solutions has been studied. In the present work, we synthesized nanosized $Sm_2O_3$ doped $CeO_2$ powders by reverse micelle process using aqueous ammonia as the precipitant; hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a micro emulsion consisting of cyclohexane as the oil phase, and poly (xoyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by Thermogravimetry-differential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD), and Transmission electron microscopy (TEM). The crystallite size was found to increase with increase in water to surfactant (R) molar ratio. Average particle size and distribution of the synthesized $Sm_2O_3$ doped $CeO_2$ were below 10 nm and narrow, respectively. TG-DTA analysis shows that phase of $Sm_2O_3$ doped $CeO_2$ nanoparticles changed from monoclinic to tetragonal at approximately $560^{\circ}C$. The phase of the synthesized $Sm_2O_3$ doped $CeO_2$ with heating to $600^{\circ}C$ for 30 min was tetragonal $CeO_2$. This study revealed that the particle formation process in reverse micelles is based on a two step model. The rapid first step is the complete reduction of the metal to the zero valence state. The second step is growth, via reagent exchanges between micelles through the inter-micellar exchange.

Synthesis and Evaluation of Variable Temperature-Electrical Resistance Materials Coated on Metallic Bipolar Plates (온도 의존성 가변 저항 발열체로 표면 처리된 금속 분리판 제조 및 평가)

  • Jung, Hye-Mi;Noh, Jung-Hun;Im, Se-Joon;Lee, Jong Hyun;Ahn, Byung Ki;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.73.1-73.1
    • /
    • 2010
  • For the successful cold starting of a fuel cell engine, either internal of external heat supply must be made to overcome the formation of ice from water below the freezing point of water. In the present study, switchable vanadium oxide compounds as variable temperature-electrical resistance materials onto the surface of flat metallic bipolar plates have been prepared by a dip-coating technique via an aqueous sol-gel method. Subsequently, the chemical composition and micro-structure of the polycrystalline solid thin films were analyzed by X-ray diffraction, X-ray fluorescence spectroscopy, and field emission scanning electron microscopy. In addition, it was carefully measured electrical resistance hysteresis loop over a temperature range from $-20^{\circ}C$ to $80^{\circ}C$ using the four-point probe method. The experimental results revealed that the thin films was mainly composed of Karelianite $V_2O_3$ which acts as negative temperature coefficient materials. Also, it was found that thermal dissipation rate of the vanadium oxide thin films partially satisfy about 50% saving of the substantial amount of energy required for ice melting at $-20^{\circ}C$. Moreover, electrical resistances of the vanadium-based materials converge on an extremely small value similar to that of pure flat metallic bipolar plates at higher temperature, i.e. $T{\geq}40^{\circ}C$. As a consequence, experimental studies proved that it is possible to apply the variable temperature-electrical resistance material based on vanadium oxides for the cold starting enhancement of a fuel cell vehicle and minimize parasitic power loss and eliminate any necessity for external equipment for heat supply in freezing conditions.

  • PDF

Evaluation on Microstructure and Mechanical Properties of Severely Deformed Pure Cu (강가공된 순수 Cu의 미세조직과 기계적 특성 평가)

  • Song, Kuk-Hyun;Son, Hyun-Taek;Kim, Dae-Keun;Kim, Han-Sol;Kim, Won-Yong
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.263-267
    • /
    • 2011
  • The present study was carried out to evaluate the microstructural and mechanical properties of cross-roll rolled pure copper sheets, and the results were compared with those obtained for conventionally rolled sheets. For this work, pure copper (99.99 mass%) sheets with thickness of 5 mm were prepared as the starting material. The sheets were cold rolled to 90% thickness reduction and subsequently annealed at $400^{\circ}C$ for 30 min. Also, to analyze the grain boundary character distributions (GBCDs) on the materials, the electron back-scattered diffraction (EBSD) technique was introduced. The resulting cold-rolled and annealed sheets had considerably finer grains than the initial sheets with an average size of 100 ${\mu}M$. In particular, the average grain size became smaller by cross-roll rolling (6.5 ${\mu}M$) than by conventional rolling (9.8 ${\mu}M$). These grain refinements directly led to enhanced mechanical properties such as Vickers micro-hardness and tensile strength, and thus the values showed greater increases upon cross-roll rolling process than after conventional rolling. Furthermore, the texture development of <112>//ND in the cross-roll rolling processed material provided greater enhancement of mechanical properties relative to the case of the conventional rolling processed material. In the present study, we systematically discuss the enhancement of mechanical properties in terms of grain refinement and texture distribution developed by the different rolling processes.

A Study of Middle Infrared Transparent Properties of ZnS Ceramics by the Change of Micro Structure (미세 구조 변화에 따른 ZnS 세라믹의 중적외선 투과 특성 연구)

  • Park, Chang-Sun;Yeo, Seo-Yeong;Kwon, Tae-Hyeong;Park, Woon-ik;Yun, Ji-Sun;Jeong, Young-Hun;Hong, Youn-Woo;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.722-727
    • /
    • 2017
  • Transparent ZnS ceramics were synthesized by hydrothermal synthesis ($180^{\circ}C$ for 70 h), and were sintered by a hot press process at $950^{\circ}C$. To confirm the optical properties of the ZnS ceramics after sintering for various sintering holding times, we performed X-ray diffraction analysis, scanning electron microscopy, and Fourier-transform-infrared spectroscopy. The ZnS nanopowders was found to be single-phase (cubic) without any hexagonal phase. However, the hexagonal phase is formed and increases in content with increasing sintering holding time. The density of the ZnS ceramics was above 99.7%, except for the unsintered one. The ZnS ceramics showed high transmittance (~70%) when sintered for more than 2 h.

Mechanical and Chemical Characterization of NbNx Coatings Deposited by ICP Assisted DC Magnetron Sputtering

  • Jun, Shinhee;Kim, Junho;Kim, Sunkwang;You, Yong Zoo;Cha, Byungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.10-14
    • /
    • 2014
  • Niobium nitride coatings have many potential thin film applications due to their chemical inertness, good mechanical properties, temperature stability and superconducting properties. In this study, $NbN_x$ coatings were prepared by inductively coupled plasma (ICP) assisted DC magnetron sputtering method on the surface of AISI 304 austenitic stainless steels. Effects of target power were studied on mechanical and chemical properties of the coatings. The coating structure was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The coating hardness was measured by micro-knoop hardness tester. The coating thickness was measured using a 3D profiler and wear characteristics were estimated using a ball-on-disk wear tester. The thickness of the $NbN_x$ coatings increased linearly from 300 nm to 2000 nm as the Nb target power increased, and it showed over $HK_{0.005}$ 4000 hardness above Nb target power of 300 W. Hexagonal ${\delta}^{\prime}$-NbN phase and cubic ${\delta}$-NbN phase were observed in the coating films and the hardness of the NbNx coatings was higher when these two peaks were mixed. The corrosion resistance increased with the increase of the Nb target power.

Nucleation and growth mechanism of nitride films deposited on glass by unbalanced magnetron sputtering

  • Jung, Min J.;Nam, Kyung H.;Han, Jeon G.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.14-14
    • /
    • 2001
  • Nitride films such as TiN, CrN etc. deposited on glass by PVD processes have been developed for many industrial applications. These nitride films deposited on glass were widely used for not only decorative and optical coatings but also wear and corrosion resistance coatings employed as dies and molds made of glass for the example of lens forming molds. However, the major problem of nitride coatings on glass by PVD process is non-uniform film owing to pin-hole and micro crack. It is estimated that nonuniform coating is influenced by a different surface energy between metal nitrides and glass due to binding states. In this work, therefore, for the evaluation of nucleation and growth mechanism of nitride films on glass TiN and CrN film were synthesized on glass with various nitrogen partial pressure by unbalanced magnetron sputtering. Prior to deposition, for the examination of relationship between surface energy and film microstructure plasma pre-treatment process was carried out with various argon to hydrogen flow rate and substrate bias voltage, duty cycle and frequency by using pulsed DC power supply. Surface energy owing to the different plasma pre-treatment was calculated by the measurement of wetting angle and surface conditions of glass were investigated by X-ray Photoelectron Spectroscopy(XPS) and Atomic Force Microscope(AFM). The microstructure change of nitride films on glass with increase of film thickness were analyzed by X-Ray Diffraction(XRD) and Scanning Electron Microscopy(SEM).

  • PDF

Weathering Characteristics of Sedimentary Rocks Affected by Periodical Submerging (주기적으로 침수되는 퇴적암의 풍화특성)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.23-35
    • /
    • 2004
  • The weathering characteristics of periodically submerged sedimentary rocks in the Sayeon dam, Ulsan was examined by field work, electron probe micro-analysis, X-ray diffraction, and X-ray fluorescence spectrometry. Analysis of fracture zone and exfoliation showed the submerged sedimentary rocks have undergone severe mechanical weathering. Mechanical weathering in the water-rock interface accelerated chemical weathering, such as dissolution and alteration of the most of minerals except for quartz in the weathering zone. The dissolution of carbonates specially calcite, is remarkable creating the cavities, whereas formation of minerals including clay minerals is not active. The sedimentary rocks have been periodically submerged for a certain period of time, and have repeated freezing and thawing. This mechanical weathering favored infiltration, which accelerated mineral dissolution. The high content of easily soluble carbonate of the sedimentary rocks is likely the major cause of intense chemical weathering. The dissolved elements within the infiltrated water interrupted the occurrence of clay and weathering minerals, and expend fractures by infiltrated water accelerated weathering process.

Assessment of Plastic Deformation in Al6061 Alloy using Acoustic Nonlinearity of Laser-Generated Surface Wave (레이저 여기 표면파의 음향비선형성을 이용한 Al6061 합금의 소성변형 평가)

  • Kim, Chung-Seok;Nam, Tae-Hyung;Choi, Sung-Ho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.20-26
    • /
    • 2012
  • The objective of this study is to assess plastic deformation in aluminium alloy by acoustic nonlinearity of laser-generated surface waves. A line-arrayed laser beam made by high-power pulsed laser and mask slits is utilized to generate the narrowband surface wave and the frequency characteristics of laser-generated surface waves are controlled by varying the slit opening width and slit interval of mask slits. Various degrees of tensile deformation were induced by interrupting the tensile tests so as to obtain aluminum specimens with different degrees of plastic deformation. The experimental results show that the acoustic nonlinear parameter of a laser-generated surface wave increased with the level of tensile deformation and it has a good correlation with the results of micro-Vickers hardness test and electron backscatter diffraction (EBSD) test. Consequently, acoustic nonlinearity of laser-generated surface wave could be potential to characterize plastic deformation of aluminum alloy.

Formation and Hydrogen Absorption Properties of Intermetallic Mg-Ni Compound Nanoparticles (Mg-Ni 금속 간 화합물 나노입자의 형성과 수소저장 특성)

  • BAE, YOOGEUN;HWANG, CHULMIN;KIM, JONGSOO;DONG, XING LONG;KIM, SEWOONG;JUNG, YOUNGUAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.3
    • /
    • pp.238-245
    • /
    • 2017
  • Mg-Ni nanoparticles were synthesized by a physical vapor condensation method (DC arc-discharge) in a mixture of argon and hydrogen atmosphere, using compressed mixture of micro powders as the raw materials. The crystal phases, morphology, and microstructures of nanoparticles were analyzed by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compounds of $Mg_2Ni$ and $Mg_2Ni$ formed with existence of phases of Mg, Ni, and MgO in Mg-Ni nanoparticles. After one cycle of hydrogen absorption/desorption process (activation treatment), Mg-Ni nanoparticles exhibited excellent hydrogen absorption properties. $Mg_2Ni$ phase became the main phase by aphase transformation during the hydrogen treatments. The phenomenon of refinement of grain size in the nanoparticle was also observed after the hydrogen absorption/desorption processes, which was attributed to the effect of volume expansion/shrinkage and subsequent break of nanoparticles. Maximum hydrogen absorption contents are 1.75, 2.21 and 2.77 wt.% at 523, 573 and 623 K, respectively.