• 제목/요약/키워드: Micro-dimple Pattern

검색결과 15건 처리시간 0.027초

마이크로 딤플 패턴에 따른 마찰특성에 관한 연구 (A Study on Friction Characteristics According to Micro-dimple Patterns)

  • 황남성
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.124-130
    • /
    • 2015
  • The purpose of this study is to investigate friction characteristics according to micro-dimple patterns. The surface texturing of micro-dimple patterns was tested to examine the friction of pin-on-disk using flat-on-flat contact geometry. The patterns of both dimple circle and groove pattern were adopted to carry out the effect of those ones. In the low loads, such as 13.8N and 27.7N, the friction coefficients of groove pattern were lower than those of dimple circle pattern. In many other comparisons of normal loads, the groove pattern had lower friction forces, which showed the effect of surface texturing. The relationship between sliding time and friction forces showed that the increase of friction forces of groove pattern were relatively lower than those of dimple pattern. In conclusion, the dimple patterns of dimple-circle pattern and groove pattern strongly contributed to reducing the friction between contacting materials.

혼합 및 유체윤활하에서 Micro-Scale Dimple Pattern의 마찰특성 (Friction Characteristics of Micro-scale Dimple Pattern under Mixed and Hydrodynamic Lubrication Condition)

  • 채영훈;김석삼
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.188-193
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

Hexagonal Array Micro-Scale Dimple Pattern의 밀도에 따른 마찰특성 (Friction Characteristics of Hexagonal Array Micro-scale Dimple Pattern by Density)

  • 채영훈;장충선;최원식
    • Tribology and Lubricants
    • /
    • 제24권6호
    • /
    • pp.368-373
    • /
    • 2008
  • This paper will investigate the friction characteristics of a 100m Hexagonal Array, Micro-scale Dimple Pattern, on bearing steel. These characteristics are researched by utilizing a pin-on-disk wear test machine, under various test conditions. The reduction of friction is a necessary requirement for the improved efficiency of this machine. As the speed increases, there is a decrease in the effect of the dimple of friction characteristic, with substantially little change to density. Conversely, as the load increases, the dimple pattern grows larger, resulting in a difference in the texture of these two components. At a dimple density of 10% the friction characteristic is easily demonstrated, with a consistent change in both speed and load.

마찰제어를 위한 Surface texturing의 Micro-scale dimple 밀도영향 (Influence on a density of micro-scale dimple for surface texturing on friction control)

  • 채영훈;김석삼
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.945-950
    • /
    • 2004
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction.Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

  • PDF

딤플 패턴이 있는 실리콘 표면의 마찰특성 (Frictional Characteristics of Silicon Surface with Micro-dimple Pattern)

  • 유신성;허윤영;김대은
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.451-457
    • /
    • 2014
  • Surface roughness of mechanical components is an important factor which affects the tribological phenomena. Various surface patterns have been applied to surfaces to improve the tribological characteristics of mechanical components. In this work, the friction reduction effect of micropatterns on silicon was investigated. For this purpose, micro-dimple patterns were fabricated on silicon wafer by DRIE process. In the friction experiments silicone oil was used as lubricant. Also, the lubricant was cleaned to simulate a lubricant depleted condition. In depleted lubricated condition, friction coefficient of micro-pattern specimens was lower than specimens without micro-patterns. It was found that friction reduction effect of micro-pattern could be successfully maintained even after cleaning the lubricant on the surface.

Micro-scale surface texturing을 기반으로 한 저마찰효과에 대한 기초연구 (Fundamental study on the effect of friction reduction based micro-scale surface texturing)

  • 채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.17-24
    • /
    • 2004
  • Surrface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

  • PDF

포토리소그라피를 이용한 마이크로 딤플의 밀도에 따른 마찰 특성 (Friction Characteristics for Density of Micro Dimples Using Photolithography)

  • 김석삼;채영훈
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.411-417
    • /
    • 2005
  • Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple.

미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석 연구 (NUMERICAL STUDY ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO-DIMPLE TEXTURED SURFACES)

  • 홍사훈;이재봉;조민행;이성혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.363-367
    • /
    • 2009
  • Recently, the manufacturing of micro-cavity by means of laser surface texturing (LST) technique and low friction study by the LST have been in great progress. Most of current works have been dealing with the effect of cavity on friction and wear. The main objective of the present study was to investigate numerically two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces, and this study utilized the commercial CFD code (Fluent V.6.3). For the evaluation, preliminary simulation was conducted and numerical predictions were compared with the analytic solution obtained from the Reynolds's equation. Mainly, the present study investigated the influence of dimple depth, pattern shapes, and film thickness on lubrication characteristics related to the reduction of friction. It is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces. In particular, substantial decrease in shear stresses was observed as the lubricant film thickness decreases. For instance, in the case of the film thickness of 0.01 mm, the estimated shear stress decreases up to about 40%. It indicates that the film thickness would be important factor in designing the micro-dimpled surfaces. Furthermore, it was observed that such a optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses.

  • PDF

W100×L25 마이크로 타원형 딤플패턴의 마찰특성 (Friction Characteristics of W100×L25 Micro Ellipse Type Pattern)

  • 최원식;권순홍;정성원;권순구;박종민;김종순;;채영훈
    • Tribology and Lubricants
    • /
    • 제28권3호
    • /
    • pp.136-141
    • /
    • 2012
  • In this paper, we investigated the friction characteristics of $W100^{\circ}{\o}L25m$ ellipse type surface pattern, on bearing steel. These characteristics are researched by utilizing a pin-on-disk wear test machine, under various velocities and other conditions. The reduction of friction is a necessary requirement for the improved efficiency of industrial parts. As the speed increases, there is a decrease in the effect of the dimple of friction characteristic in low velocity, with substantially little change to density. Conversely, as the load increases, the test direction of ellipse type dimple pattern, resulting in a difference in the texture of these two components. At a dimple density of 7.5% the friction characteristic is easily demonstrated, with a consistent change in both speed and load.

Tribology Characteristics of Hexagonal Shape Surface Textured Reduction Gear in Electric Agricultural Vehicle

  • Choi, Wonsik;Pratama, Pandu Sandi;Byun, Jaeyoung;Kwon, Soonhong;Kwon, Soongu;Park, Jongmin;Kim, Jongsoon;Chung, Songwon
    • 한국산업융합학회 논문집
    • /
    • 제22권1호
    • /
    • pp.47-54
    • /
    • 2019
  • An experimental study was conducted on the wear and friction responses in sliding tests of a micro-textured surface on laser pattern (LP) steel as reduction gear material in electric guided vehicle. In this research, the friction characteristics of laser pattern steel under different micro texture density conditions were investigated. The friction tests were carried out at sliding speeds of 0.06 m/s to 0.34 m/s and at normal loads of 2 to 10 N. Photolithography method was used to create the dimples for surface texturing purpose. Four different specimens having different dimple densities of 10%, 12.5%, 15%, and 20% were observed respectively. In this research, friction conditions as shown in Stribeck curve were investigated. Furthermore, the microscopic surface was observed using scanning electron microscope. It was found that the dimple density had a significant role on the friction characteristics of laser pattern steel conditioned as reduction gear material in an agricultural vehicle. The duty number showed that the friction condition was hydrodynamic regime. The best performance was obtained from 12.5% dimple density with lowest friction coefficient achieved at 0.018771 under the velocity of 0.34 m/s and 10N load.