• Title/Summary/Keyword: Micro-cell

Search Result 1,238, Processing Time 0.031 seconds

Surface Morphology of PEO-treated Ti-6Al-4V Alloy after Anodic Titanium Oxide Treatment (ATO 처리후, 플라즈마 전해 산화 처리된 Ti-6Al-4V 합금의 표면 형태)

  • Kim, Seung-Pyo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.75-75
    • /
    • 2018
  • Commercially pure titanium (CP-Ti) and Ti-6Al-4V alloys have been widely used in implant materials such as dental and orthopedic implants due to their corrosion resistance, biocompatibility, and good mechanical properties. However, surface modification of titanium and titanium alloys is necessary to improve osseointegration between implant surface and bone. Especially, when titanium oxide nanotubes are formed on the surface of titanium alloy, cell adhesion is greatly improved. In addition, plasma electrolytic oxide (PEO) coatings have a good safety for osseointegration and can easily and quickly form coatings of uniform thickness with various pore sizes. Recently, the effects of bone element such as magnesium, zinc, strontium, silicon, and manganese for bone regeneration are researching in dental implant field. The purpose of this study was researched on the surface morphology of PEO-treated Ti-6Al-4V alloy after anodic titanium oxide treatmentusing various instruments. Ti-6Al-4V ELI disks were used as specimens for nanotube formation and PEO-treatment. The solution for the nanotube formation experiment was 1 M $H_3PO_4$ + 0.8 wt. % NaF electrolyte was used. The applied potential was 30V for 1 hours. The PEO treatment was performed after removing the nanotubes by ultrasonics for 10 minutes. The PEO treatment after removal of the nanotubes was carried out in the $Ca(CH_3)_2{\cdot}H_2O+(CH_3COO)_2Mg{\cdot}4H_2O+Mn(CH_3COO)_2{\cdot}4H_2O+Zn(CH_3CO_2)_2Zn{\cdot}2H_2O+Sr(CH_2COO)_2{\cdot}0.5H_2O+C_3H_7CaO_6P$ and $Na_2SiO_3{\cdot}9H_2O$ electrolytes. And the PEO-treatment time and potential were 3 minutes at 280V. The morphology changes of the coatings on Ti-6Al-4V alloy surface were observed using FE-SEM, EDS, XRD, AFM, and scratch tester. The morphology of PEO-treated surface in 5 ion coating solution after nanotube removal showed formation or nano-sized mesh and micro-sized pores.

  • PDF

A Study on Microstructure and Mechanical Properties of Modified 9Cr-1Mo and 9Cr-0.5Mo-2W Steels for nuclear Power Plant (원자력용 개량 9Cr-1Mo 및 9Cr-0.5Mo-2W 강의 미세조직과 기계적 특성 연구)

  • Kim, Seong-Ho;Song, Byeong-Jun;Han, Chang-Seok;Guk, Il-Hyeon;Ryu, U-Seok
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1137-1143
    • /
    • 1999
  • Microstructure and mechanical properties of Mod.9Cr-1Mo and W added 9Cr-0.5Mo2W steels were investigated for liquid metal reactor (LMR) heat exchange tube. The tempering temperatures at which cell structure was formed were $700^{\circ}C$ for Mod.9Cr-1Mo steel and $750^{\circ}C$ for W added 9Cr0.5Mo-2W steel. indicating the recovery of dislocation was delayed by the addition of W. 9Cr-0.5Mo-2W steel had the same kinds of precipitates with Mod.9Cr-1Mo steel, but the W was included in the precipitates in 9Cr-0.5Mo-2W steel. Micro-hardness and ultimate tensile strength of 9Cr-0.5Mo-2W steel were higher than those of Mod.9Cr-1Mo steel. The impact property of Mod.9Cr-1Mo steel was superior to that of 9Cr-0.5Mo-2W steel.

  • PDF

Iontophoretic Delivery of Levodopa: Permeation Enhancement by Oleic Acid Microemulsion and Ethanol (Levodopa의 이온토포레시스 경피전달: 올레인산 아이크로에멀젼 및 에탄올의 투과증진)

  • Jung, Shin-Ae;Gwak, Hye-Sun;Chun, In-Koo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • In order to develop optimal formulation and iontophoresis condition for the transdermal delivery of levodopa, we have evaluated the effect of two permeation enhancers, ethanol and oleic acid in microemulsion, on transdermal delivery of levodopa. In vitro flux studies were performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Current density applied was $0.4\;mA/cm^2$ and current was off after 6 hours application. Levodopa was analysed by HPLC at 280 nm. The o/w microemulsions of oleic acid in buffer solution (pH 2.5 & 4.5) were prepared using oleic acid, Tween 80 and ethanol. The existence of microemulsion regions were investigated in pseudo-ternary phase diagrams. Contrary to our expectation, cumulative amount of levodopa transported from microemulsion (pH 2.5) for 10 hours was similar to that from aqueous solution in all delivery methods (passive, anodal and cathodal). When pH of the micro-emulsion was pH 4.5, cumulative amount of levodopa transported for 10 hours increased about 40% (anodal) to 50% (cathodal), when compared to that from aqueous solution. Flux from pH 4.5 microemulsion showed higher value than that from pH 2.5 in all delivery methods. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5. The effect of ethanol on iontophoretic flux was studied using pH 2.5 phosphate buffer solution containing 3% or 5% (v/v) ethanol. Flux enhancement was observed in passive and anodal delivery as the concentration of the ethanol increased. Without ethanol, cathodal delivery showed higher flux than anodal delivery. Anodal delivery increased the cumulative amount of levodopa transported 1.6 fold by 5% ethanol after 10 hours. However, in cathodal delivery, no flux enhancement of levodopa was observed during current application and only marginal increase in cumulative amount transported after 10 hours was observed by 5% ethanol. These results seem to be related to the decrease in dielectric constant of the medium and the lipid extraction of the ethanol, which decrease the electroosmotic flow, and thus decrease the flux. Overall, the results provide important insights into the role of electroosmosis and electrorepulsion in the transport of levodopa through skin, and provide some useful informations for optimal formulation for levodopa.

Influence of Chloride Content of on Electrical Resistivity in Concrete (콘크리트내 염소이온량이 전기저항에 미치는 영향)

  • Yoon, In-Seok;Nam, Jin-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.90-96
    • /
    • 2014
  • The electrical resistivity of concrete can be related to two processes involved in corrosion of reinforcement: initiation (chloride penetration) and propagation (corrosion rate). The resisistivity of concrete structure exposed to chloride indicates the risk of early corrosion damage, because a low resistivity is related to rapid chloride penetration and to high corrosion rate. Concrete resistivity is a geometry-independent material property that describes the electrical resistance, which is the ratio between applied voltage and resulting current in a unit cell. In previous study, it was realized that the resistivity of concrete depended on the moisture content in the concrete, microstructural properties, and environmental attack such as carbonation. The current is carried by ions dissolved in the pore liquid. While some data exist on the relationship between moisture content on electrical resistivity of concrete, very little research has been conducted to evaluate the effect of chloride on the conduction of electricity through concrete. The purpose of this study is to examine and quantify the effect of chloride content on surface electrical resistivity measurement of concrete. It was obvious that chloride content had influenced the resistivity of concrete and the relationship showed a linear function. That is, concrete with chloride ions had a comparatively lower resistivity. Decreasing rate of resistivity of concrete was clear at early time, however, after 50 days resistivity was constant irrespective of chloride concentration. Conclusively, this paper suggested the quantitive solution to depict the electrical resistivity of concrete with chloride content.

Effects of HPL-04 on Degenerative Osteoarthritis (퇴행성 골관절염에 대한 HPL-04의 효과)

  • Na, Ji-Young;Song, Ki-Bbeum;Kim, Sukho;Kwon, Young-Bae;Kim, Dae-Gi;Lee, Jun-Kyoung;Jo, Hyoung-Kwon;Kwon, Jungkee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.30-39
    • /
    • 2014
  • HanPoong Leading (HPL)-04 were prepared with different oriental medicines (balk of Kalopanax pictus balk, Chaenomelis Fructus, Angelica gigas root, Zingiber officinale, Raphanus sativus Linne and Saururus chinensis Baill.) to investigate the protective effects of HPL-04 on cartilage degradation in knee osteoarthritis (OA). Rat articular chondrocytes incubated with rhIL-$1{\alpha}$ markedly increased matrix metalloproteinase (MMP)-2 and 9 activities, decreased cell viability and reduced chondrogenic gene expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, MMP-2 and 9 activities and real time RT-PCR indicated that HPL-04 counteracted these harmful effects in dose-dependent manner. In addition, for experimental OA in vivo, monosodium iodoacetate (MIA, 0.5 mg/50 ${\mu}L$) was injected into knee joints of rats and administered HPL-04 to rats for 4 consecutive weeks after MIA treatment. The experimental data showed that treatment with HPL-04 significantly prevented of MMP-2 and 9 activities in articular cartilage. Histopathological and micro-CT evaluations of the knee joints also revealed that HPL-04 effectively ameliorated MIA-induced degenerative OA. In conclusion, HPL-04 has potential applicability for the prevention and treatment of degenerative OA.

The Anticommons: BRCA Gene Patenting Controversy in the United States (유전자와 생명의 사유화, 그리고 반공유재의 비극: 미국의 BRCA 인간유전자 특허 논쟁)

  • Yi, Doogab
    • Journal of Science and Technology Studies
    • /
    • v.12 no.1
    • /
    • pp.1-43
    • /
    • 2012
  • This paper examines the American Civil Liberties Union(ACLU)'s recent legal challenge on patents held by Myriad Genetics on two genes (BRCA1 and BRCA2) associated with a high risk of breast and ovarian cancer. Instead of analyzing the ACLU's objections to the BRCA patents in terms of its legal technicalities and normative ethical principles, this paper seeks to situate this legal case in the broader historical context of the shifting understanding of the relationship between private ownership, economic development, and the public interest in academic sciences. This paper first briefly chronicles a series of scientific developments and key legal decisions involving patenting of life forms, including genetically engineered micro-organisms animals and biological materials of human origins like cell cultures and genes, that led to the US Patent and Trademark Office(USPTO)'s official guidelines on human gene patenting in 2001. At another level, this paper analyzes the expansion of the scope of intellectual property rights in the life sciences in terms of shifting economic and legal assumptions about public knowledge and its role for economic development in the 1970s. I then show how these economic, legal, and ethical ideas that linked private ownership and the public interest have been challenged from the 1990s, calling for revisions in intellectual property laws regarding a wide array of life forms. The tragedy of the anticommons in human gene patenting, according to ACLU, has severely undermined creative scientific activities, medical innovations, access to health care and rights to life among cancer patient groups. ACLU's objection to human gene patenting on several US-constitutional grounds in turn suggests issues regarding intellectual property are critically linked to vital issues pertinent to the creative communities in arts and sciences, such as free exchange of ideas, censorship and monopoly, and free expression and piracy etc.

  • PDF

Pyriproxyfen Inhibits Hemocytic Phagocytosis of the Beet Armyworm, Spodoptera exigua (파밤나방(Spodoptera exigua)의 혈구세포 식균반응에 대한 피리프록시펜의 억제효과 Nalini Madanagopal)

  • Madanagopal, Nalini;Lee, Yong-Joon;Kim, Yong-Gyun
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.3
    • /
    • pp.164-170
    • /
    • 2007
  • The concept of innate immunity in insects which refers to the first line of host defense constitutes the humoral and cellular components which are involved in recognition and actively participate in the elimination of the intruding foreign micro- or macro-organisms. Several recent studies suggest that juvenile hormone (JH) modulates the cellular immune reactions in response to pathogen. In this study, pyriproxyfen (a JH agonist as an insect growth regulator) was tested in its any inhibitory effect on the immune reactions of the beet armyworm, Spodoptera exigua. To this end, five different hemocyte morphotypes of final instar S. exigua were identified by phase contrast microscopy. Plasmatocytes and granular cells, which constitute about 90% of the total hemocyte count, were prominently distinguished based on their basophilic/acidophilic nature using Giemsa stain. The role of pyriproxyfen on the functional ability of hemocytes was analyzed using FITC-labeled Providencia vermicola for the phagocytic potential of the hemocytes. Both granular cells and plasmatocytes exhibited phagocytosis behavior. Pyriproxyfen significantly inhibited the phagocytosis of both cell types, proposing its novel action as an immunosuppressant.

Effect of Turbidity Changes on Tissues of Zacco koreanus (탁도 변화가 참갈겨니 (Zacco koreanus) 조직에 미치는 영향)

  • Shin, Myung-Ja;Kim, Jeong-Sook;Hwang, Yun-Hee;Lee, Jong-Eun;Seo, Eul-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • Present study aims to investigate the effect of muddy water on the gill and the kidney tissues of Zacco koreanus under high turbidity rearing condition. The gill of Z. koreanus showed abnormal shapes in its secondary lamellae and a rough surface with impure debris in the high level of turbidity and the longer raising period condition. In addition, the gills showed the edema, the exfoliation of epithelial cell, and the fusion of the secondary lamellae. In case of kidney tissue, the atrophied glomerulus was observed, and the empty space in Bowman's capsule was wider. The SOD activities in both gill and kidney tissues were increased in proportion to the high level of turbidity. On the while, CAT and GPX activities were shown constant level in the gill, but were increased in the kidney in the high turbid muddy water. These results indicate that the harmful radicals which generate by high level of turbidity could be removed partly by antioxidant enzymes in the kidney. The concentrations of micro heavy metal ions accumulated in the gill increased drastically at the 1,000 NTU. Based on the above results, it is considered that the exposure to the high level of turbidity for long period may affect on the structures of tissues, and change the enzymatic balance in Z. koreanus, causing the fatal disease.

Korean Red Ginseng aqueous extract improves markers of mucociliary clearance by stimulating chloride secretion

  • Cho, Do-Yeon;Skinner, Daniel;Zhang, Shaoyan;Lazrak, Ahmed;Lim, Dong Jin;Weeks, Christopher G.;Banks, Catherine G.;Han, Chang Kyun;Kim, Si-Kwan;Tearney, Guillermo J.;Matalon, Sadis;Rowe, Steven M.;Woodworth, Bradford A.
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.66-74
    • /
    • 2021
  • Background: Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. Methods: Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (μOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. Results: RGAE (at 30㎍/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = ㎂/㎠)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 ㎛ vs control, 3.9+/-0.09 ㎛; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. Conclusion: RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.

Ginsenoside Rg3 ameliorates myocardial glucose metabolism and insulin resistance via activating the AMPK signaling pathway

  • Ni, Jingyu;Liu, Zhihao;Jiang, Miaomiao;Li, Lan;Deng, Jie;Wang, Xiaodan;Su, Jing;Zhu, Yan;He, Feng;Mao, Jingyuan;Gao, Xiumei;Fan, Guanwei
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.235-247
    • /
    • 2022
  • Background: Ginsenoside Rg3 is one of the main active ingredients in ginseng. Here, we aimed to confirm its protective effect on the heart function in transverse aortic coarctation (TAC)-induced heart failure mice and explore the potential molecular mechanisms involved. Methods: The effects of ginsenoside Rg3 on heart and mitochondrial function were investigated by treating TAC-induced heart failure in mice. The mechanism of ginsenoside Rg3 for improving heart and mitochondrial function in mice with heart failure was predicted through integrative analysis of the proteome and plasma metabolome. Glucose uptake and myocardial insulin sensitivity were evaluated using micro-positron emission tomography. The effect of ginsenoside Rg3 on myocardial insulin sensitivity was clarified by combining in vivo animal experiments and in vitro cell experiments. Results: Treatment of TAC-induced mouse models with ginsenoside Rg3 significantly improved heart function and protected mitochondrial structure and function. Fusion of metabolomics, proteomics, and targeted metabolomics data showed that Rg3 regulated the glycolysis process, and Rg3 not only regulated glucose uptake but also improve myocardial insulin resistance. The molecular mechanism of ginsenoside Rg3 regulation of glucose metabolism was determined by exploring the interaction pathways of AMPK, insulin resistance, and glucose metabolism. The effect of ginsenoside Rg3 on the promotion of glucose uptake in IR-H9c2 cells by AMPK activation was dependent on the insulin signaling pathway. Conclusions: Ginsenoside Rg3 modulates glucose metabolism and significantly ameliorates insulin resistance through activation of the AMPK pathway.