• Title/Summary/Keyword: Micro-bubble system

Search Result 62, Processing Time 0.021 seconds

Fabrication of Ozone Bubble Cleaning System and its Application to Clean Silicon Wafers of a Solar Cell

  • Yoon, J.K.;Lee, Sang Heon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.295-298
    • /
    • 2015
  • Ozone micro-bubble cleaning system was designed, and made to develop a unique technique to clean wafers by using ozone micro-bubbles. The ozone micro-bubble cleaning system consisted of loading, cleaning, rinsing, drying and un-loading zones, respectively. In case of the cleaning the silicon wafers of a solar cell, more than 99 % of cleaning efficiency was obtained by dipping the wafers at 10 ppm of ozone for 10 minutes. Both of long cleaning time and high ozone concentration in the wet-solution with ozone micro-bubbles reduced cleaning efficiency because of the re-sorption of debris. The cleaning technique by ozone micro-bubbles can be also applied to various wafers for an ingot and LED as an eco-friendly method.

Tertiary Treatment of Sewage by Micro Bubble Ozone and BAF System (미세기포 오존과 생물여과 시스템을 이용한 생활하수의 3차 처리에 관한 연구)

  • Kang, Dong-Han;Jang, Young-Ho;Kim, Jong-Su;Kim, Keug-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.877-884
    • /
    • 2011
  • In this paper, the removal characteristics of dissolved organic carbon (DOCs) by micro bubble ozonation process and $O_3/UV$ process were comparatively studied. In the point of DOC removing reaction coefficient, micro bubble ozonation system and $O_3/UV$ process had not significant difference, $0.0120sec^{-1}$ and $0.0141sec^{-1}$. Therefore micro bubble ozonation process is more suitable for tertiary treatment of sewage in the point of installation and maintenance cost-reducing. The optimum ozone injection rate was 2.0 g $O_3/g$ DOC and HRT was 3 min for the micro bubble ozonation process. The removal efficiency of DOC and SUVA in micro bubble ozonation system was 32.8% and 58.3% respective. Biological aerated filter (BAF) process was installed to remove soluble organic material increased by micro bubble ozonation system. And the effluent BOD of BAF was below 1.0 mg/L. In the view of cost-effectiveness, $O_3/BAF$ process was more profitable than $O_3/UV/BAF$ process for tertiary treatment of sewage. In order to nitrify ammonia in the BAF process completely, $NH_4{^+}-N$ concentration in the influent water of BAF should be designed considering low water temperature in the winter season.

Effect of oxygen micro-bubble for the temperature and oxygen concentrations of fish farming facility (미세기포 액화산소가 가두리양식장의 수온 및 산소농도에 미치는 영향)

  • AN, Na;LEE, Jeong Kyu;LEE, Jun Seok;CHOI, Keun-Hyung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.407-418
    • /
    • 2020
  • Mass mortality of mariculture fish due to high summer temperatures is a major issue in the mariculture industry in many coastal waters of Korea, yet measures to mitigate the impact are generally limited. We injected a micro-bubble of liquefied oxygen into the bottom of rockfish cages (about 6-8 m deep) in order to maximize the dispersal of micro-bubbled seawater and reduce fish mortality. The injection of low-temperature oxygen in micro-bubbles lowered the water temperature at the injection area by as much as 1℃ and increased dissolved oxygen concentration by 0.5 ppm. In early August, following a week with persistent high water temperature (above 28.5℃), there was an increase in fish mortality despite the micro-bubble system, which resulted in approximately 7% death of the total introduced fish population. However, this mortality appeared to be much lower than mortality reported in a neighboring mariculture facility (approximately 50% mortality). We also estimated the volume that can be recirculated with pumped seawater using a micro-bubble system. We suggest that this approach of injecting liquefied oxygen through a micro-bubble system may reduce fish mortality during high temperature periods.

Analysis on Actuation Mechanism of Micro Actuator by Bubble Formation (기포형성에 의한 마이크로 액추에이터의 구동기구 해석)

  • 오시덕;승삼선;곽호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.418-426
    • /
    • 1995
  • A bubble-powered microactuator is designed conceptually. And the actuation mechanism due to bubble growth and collapse is studied numerically and analytically. In this analysis, it is estimated that the time lag for bubble formation on micro line heater, the duration of the bubble growth and collapse and the pressure change in actuator due to the bubble evolution. Based on these calculations, the actuator control scheme is visualized. This actuator may be applicable to the system which needs to pump liquid correctly and regularly.

Development and performance test of a micro bubble irrigation system for root canal cleaning of tooth (치아 근관 세척용 마이크로 기포 세정 시스템 개발 및 성능평가)

  • Sung, Gilhwan;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Elimination of the smear layer and bacteria in the root canal is the most important in the endodontic treatment, and various irrigation devices have been developed. Nevertheless, it is hard to eliminate the smear layer and bacteria completely. In this paper, a micro bubble irrigation system has been developed for the root canal cleaning of tooth. Micro bubbles are generated when pressurized fluids passing through a porous material inside a hand-piece nozzle, and the bubbly flows excited by ultrasonic vibration are observed using a high-speed camera and a microscope. The results show that the diameter and number of bubbles increases with the applied pressure, and there found an optimum excitation frequency in order to minimize the bubble size. From in-vitro tests, it is also verified that the developed bubble irrigation system has the ability of antibacterial and infection removal. Thus, this biocompatible system would be well suited for root canal cleaning.

Evaluation of Human-body Effect on Half Body Bathing System Using Micro Bubble and LED Lighting for the Elderly (마이크로 버블과 LED조명을 이용한 고령자용 반신욕조 시스템 인체영향 평가)

  • Kim, K.T.;Oh, S.Y.;Yu, M.;Yu, C.H.;Han, K.S.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2014
  • The purpose of this study was to investigate the human body effect according to micro bubble and LED lighting in half body bathing. This study was conducted on 6 elderly male and 7 female in 70's, and the subjects were classified into half body bathing with the micro bubble group (3 male, 4 female) and without the micro bubble group (3 male, 3 female) to proceed to the experiment. Experiments were performed 4 times by changing the LED lighting colors. As a result, parasympathetic nerves were activated than sympathetic nerves (micro bubble stimulation : 21.41%) and the temperature of the body were increased by $5.93^{\circ}C$ with micro bubble and red lighting stimulation. It is considered that this work will help to utilize the half body bathing system for the micro bubble and LED lighting.

  • PDF

A Study on Ozone Micro Bubble Effects for Solar Cell Wafer Cleaning (신개념 태양전지 세정용 오존마이크로 버블에 관한 연구)

  • Yoon, Jong-Kuk;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.94-98
    • /
    • 2012
  • The behavior of ozone micro bubble cleaning system was investigated to evaluate the solution as a new method of solar cell wafer cleaning in comparison with former conventional RCA cleaning. We have developed the ozone dissolution system in the ozonated water for more efficient cleaning conditions. The optimized cleaning conditions for solar cell wafer process were 10 ppm of ozone concentration and 12 minutes in cleaning periods, respectively. We have confirmed the cleaning reliability and cell efficiencies after ozone micro bubble cleaning. Using this new cleaning technology, it was possible to obtain higher efficiency, higher productivity, and fast tact time for applying cleaning in the fields on bare ingot wafer, LED wafers as well as the solar cell wafer.

A Study on Anti-Icing Technique for Ballast Water of Icebreaking Vessels Operating in Ice-Covered Water (극지운항용 빙해선박의 밸러스트 수 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Lee, Chun-Ju;Cho, Seong-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2011
  • When freezing is present on ballast water, it can impose additional loads on the hull and effect on stabilization of ship. The anti-icing techniques of ballast water, therefore, are key criteria for ship safety. The existing anti-icing techniques of ballast tank are hull heating, water circulation and air bubble system etc. In this research, anti-icing performance tests for the ballast water using micro-bubble system and sea water circulation system have been carried out at two temperature conditions($-10^{\circ}C$ and $-25^{\circ}C$). Ambient temperature, sea water temperature and temperature of the inner parts of the ballast tank are measured and also ballast water conditions are checked during the model test. The applied anti-icing techniques of ballast water, such as micro-bubble system and sea water circulation system show good performance in the low temperature conditions.

Evaluation for the Numerical Model of a Micro-Bubble Pump (미세버블펌프 수치모델평가 및 검증)

  • LEE, SANG-MOON;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.121-126
    • /
    • 2016
  • Hydraulic performance of a micro-bubble pump has been analyzed by numerical simulation and experimental measurements. Flow recirculation apparatus between the pump inlet and outlet reserviors has been adopted to measure pump performance according to flow conditions sequentially. To analyze three-dimensional flow field in the micro-bubble pump, general analysis code, CFX, is employed. SST turbulence model is employed to estimate the eddy viscosity and compared the pump performance to k-${\varepsilon}$ model. Unstructured grids are used to represent a composite grid system including blade, casing and inlet casing. It is found that the numerical model used in the present study is effective to evaluate the pump performance. From the numerical simulation, low velocity region due to pressure loss is decreased where pump efficiency has maximum value. Detailed flow field inside the micro-bubble pump is also analyzed and compared.

Parameter identification for the bubble point measurement of Liquid Acquisition Device (액체포집장치의 기포점 측정을 위한 변수식별)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Byun, Yung-Hwan;Jung, Young-Suk;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.416-423
    • /
    • 2012
  • Liquid acquisition device in the liquid propellant supply system is required to protect entrance of gas bubble into the propulsion system. The device exploits the capillary effect of micro-sized poles in a screen and supplies pure liquid-phase propellant to the propulsion system. The bubble point is the most important performance parameter in the design of a liquid acquisition device. In this paper, performance parameters affecting the bubble point are identified through literature survey, in order to develop the experimental setup for the bubble point measurement.

  • PDF