• Title/Summary/Keyword: Micro-angle sensor

Search Result 40, Processing Time 0.031 seconds

A Single Lens Micro-Angle Sensor

  • Saito, Yusuke;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.14-19
    • /
    • 2007
  • Angle sensors based on the principle of autocollimation, which are usually called autocollimators, can accurately measure small tilt angles of a light-reflecting flat surface. This paper describes a prototype micro-angle sensor that is based on the laser autocollimation technique. The new angle sensor is compact and consists of a laser diode as the light source and a quadrant photodiode as a position-sensing device. Because of its concise design, the microangle sensor facilitates dynamic measurements of the angular error motions of a precision stage without influencing the original dynamic properties of the stage. This is because the sensor only requires a small extra target mirror to be mounted on the stage. The sensitivity of the angle detection is independent of the focal length of the objective lens; therefore, an objective lens with a relatively short focal length is employed to reduce the size of the device. The micro-angle sensor uses a single lens for the both the laser collimation and focusing, which distinguishes it from the conventional laser autocollimation method that has separate collimate and objective lenses. The new micro-angle sensor has dimensions of $15.1\times22.0\times14.0mm$ and its resolution is better than 0.1 arc-second The optical design and performance of this micro-angle sensor were verified by experimental results.

Wide-range Speed Control Scheme of BLDC Motor Based on the Hall Sensor Signal

  • Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.714-722
    • /
    • 2018
  • This paper presents a wide-range speed control scheme of brushless DC (BLDC) motors based on a hall sensor with separated low- and normal-speed controllers. However, the use of the hall sensor signal is insufficient to detect motor speed in the low-speed region because of low sensor resolution and time delay. In the proposed method, a micro-stepping current control method according to the torque angle variation is presented. In this mode, the motor current frequency and rotating angle are determined by the reference speed without the actual speed fed by the hall sensor. The detected torque angle is used to adjust the current value in a limited band to control the current value in accordance with the load. The torque angle is detected exactly at the changing point of the hall sensor signal. The rotor can follow the rotating flux with the variable torque angle. In a normal speed range, the conventional vector control scheme is used to control the motor current with a PI speed controller using the hall sensor. The torque characteristics are analyzed on the basis of the back EMF and current shape. To adopt the vector control scheme, the continuous rotor position is estimated by the measured speed and hall sensor position. At the mode changing point between low and normal speed range, the proper initial current command and reference rotor position are calculated. The calculated current command can reduce the torque ripple during transient mode. The proposed method is simple but effective in extending the speed control range of a conventional BLDC motor with hall sensor without the need for a high-resolution encoder. The effectiveness of the proposed method is verified by various experiments on a practical BLDC motor.

Modeling of Sound-structure Interactions for Designing a Piezoelectric Micro-Cantilever Acoustic Vector Sensor (압전 미세 외팔보 형 수중 음향 벡터센서의 작동 원리와 설계 기법)

  • Yang, Seongkwan;Kim, Junsoo;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • An acoustic vector sensor is a device that is capable of measuring the direction of wave propagation and the acoustic pressure. In this paper, the modeling of micro-cantilever sensor for the vector sensor are proposed by consideration of acoustic phenomenon in water. Two models based on unimorph structure are proposed in this paper and corresponding transfer function which describes the relation between input pressure wave and output voltage depending on incidence angle and frequency of pressure wave is derived based on lumped model. It has been shown that very thin and flexible micro-cantilever can be used to measure directly the particle velocity component in water.

A Study on Engine Control System Using Micro-Computer (마이크로 컴퓨터를 이용한 차량용 엔진 제어에 관한 기초 연구)

  • 강기문;전병실;황준택
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.64-73
    • /
    • 1985
  • In order to control ignition advance angle, this system is designed with Z-80 CPU, CTC (counter Timer Circuit), PIO(Parallel Input Output), A/D Converter and Memory, etc. Serial pulses from speed sensor and analog voltage from pressure sensor are converted to digital data. In order to reduce the error of ignition advance angle output, the reference of ignition advance angle output is set 56.25 before TDC(Top Dead Center). The table of ignition advance angle and program which have a main routine and subroutines are written into ROM ( 1 K-byte). The experimental result of this system is correspondent to the theoretical values of proposed ignition advance angle table. This system can be utilized to any other type of 4 cylinder vehicles for advance angle control by changing software.

  • PDF

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

New Classes of LC Resonators for Magnetic Sensor Device Using a Glass-Coated Amorphous CO83.2B3.3Si5.9Mn7.6 Microwire

  • Kim, Yong-Seok;Yu, Seong-Cho;Hwang, Myung-Joo;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.122-127
    • /
    • 2005
  • New classes of LC resonators for micro magnetic sensor device were proposed and fabricated. The first type LC resonator (Type I) consists of a small piece of microwire and two cylindrical electrodes at the end of the microwire without direct contact to its ferromagnetic core. In type I resonator the ferromagnetic core of the microwire and cylindrical electrodes act as an inductor and two capacitors respectively to form a LC circuit. The second type LC resonator (Type II) consists of a solenoidal micro-inductor with a bundle of soft magnetic microwires as a core. The solenoidal micro-inductors fabricated by MEMS technique were $500\sim1,000\;\mu{m}$ in length with $10\sim20$ turns. A capacitor is connected in parallel to the micro-inductor to form a LC circuit. A tiny glass coated $CO_{83.2}B_{3.3}Si_{5.9}Mn_{7.6}$ microwire was fabricated by a glass-coated melt spinning technique. A supergiant magneto-impedance effect was found in a type I resonator as much as 400,000% by precise tuning frequency at around 518.51 MHz. In type II resonator the changes of inductance as a function of external magnetic field in micro-inductors with properly annealed microwire cores were varied as much as 370%. The phase angle between current and voltage was also strongly dependent on the magnetic field. The drastic increments of magnetoimpedance at near the resonance frequency were observed in both types of LC resonators. Accordingly, the sudden change of the phase angle, as large as $180^{\circ}C$, evidenced the occurrence of the resonance at a given external magnetic field.

Self-Tuning Control of SRM for Maximum Torque with Current and Shaft Position Feedback

  • Seo Jong-yun;Yang Hyong-yeol;Kim Kwang-Heon;Lim Young-Cheol;Cha Hyun-Rok;Jang Do-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.351-354
    • /
    • 2001
  • In this paper, we present self-tuning control of switched reluctance motor for maximum torque with phase current and shaft position sensor. Determination method of turn-on/off angle is realized by using self-tuning control method. During the sampling time, micro-controller checks the number of pulse from encoder and compare with the number of pre-checked pulse. After micro-controller calculates between two data, it moves forward or backward turn-off angle. When the turn-off angle is fixed optimal turn-off angle, the turn-on angle automatically moves forward or backward by a step using self-tuning control method. And then, optimal turn-off angle is searched once again. As such a repeating process, turn-on/off angle is moved automatically to obtain the maximum torque. The experimental results are presented to validate the self-tuning algorithm.

  • PDF

The Maximum Torque/Efficiency of SRM Driving for Self-Tuning Control (자기동조 제어에 의한 SRM의 최대 토크/효율 운전)

  • Seo J.Y.;Cha H.R.;Kim K.H.;Lim Y.C.;Jong D.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.677-680
    • /
    • 2003
  • The control of the SRM(Switched Reluctance Motor) is usually based on the non-linear inductance profiles with positions. So determination of optimal switching angle is very different. we present self-tuning control of SRM for maximum torque and efficiency with phase current and shaft position sensor During the sample time, micro-controller checks the number of pre-checked pulse. After micro-controller calculates between two data, it move forward or backward turn-off angle. When the turn-off angle is fixed optimal turn-off angle, turn-on angle moves forward or backward by a step using self-tuning control method. And then, optimal turn-off angle is searched once again. As such a repeating process, turn-on/off angle is moves automatically to obtain the maximum torque and efficiency. The experimental results are presented to validate the self-tuning algorithm.

  • PDF

Development of Straightness, Roundness Measurement System for Standard Electrode of Loss Angle (손실각 표준기 전극의 진직, 진원도 측정시스템 개발)

  • 장종훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.198-203
    • /
    • 1998
  • To acquire the high precision of profile for standard electrode of loss angle, it is needed ultraprecision machining technology like MEAP(Magnetic Electronic Abrasive Polishing) and the very high profile measurement technology which can measure a micro unit about the workpiece. So, in this paper, it was developed the measurement system of precision of profile using non-contactable sensor that was approximate sensor of capacitance type, because that is better than others in the electrical characteristics. And standard electrode of loss angle was machined by the MEAP machining technology. In this study, it was development of precision measurement system. This system could be used measure the workpiece of roundness and straightness much more precise and faster than general mechanical measurement system done before. And it could be helped to minimize machining time and planning by very fast and precise measurement about the workpiece.

  • PDF

A Study on the Event Processing for Electronic Control (전자제어의 Event 처리방법에 관한 연구)

  • 이종승;이중순;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.115-122
    • /
    • 1998
  • For digital engine control timings, such as ignition, are based on the crank shaft angle. Therefore, it is very important that the angle of the crank shaft can be detected with accuracy for optimal ignition timing. Sequential multi-point injection(MPI) systems that have independent injection events for each cylinder, are used to inject an accurate quantity of fuel, and to cope with varying engine status promptly. In this study the distributorless ignition timing. A crankshaft position sensor has been installed such that it generates a number of pulses per crankshaft revolution to permit accurate detection of the crank shaft angle. An event detecting algorithm has been developed, which detects the crank shaft pulses generated by the position sensor, and the software outputs the required control signals at given crank angle values. We clarified that the hardware method is the best way to increase the performance of the control system, because the event detecting duration T(1+2)max becomes zero.

  • PDF