• Title/Summary/Keyword: Micro-Tube

Search Result 301, Processing Time 0.029 seconds

Effect of Micro Grooves on the Performance of Condensing Heat Transfer of the Micro Grooved Thermosyphons

  • Han, Kyu-Il;Cho, Dong-Hyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.184-191
    • /
    • 2002
  • This study concerns the performance of the condensing heat transfer performance of two-phase closed thermosyphons with plain copper tube and tubes having 50, 60, 70, 80, 90 internal micro grooves. Distilled water, methanol, ethanol have been used as the working fluid. The numbers of grooves and operating temperature have been investigated as the experimental parameters. Condensing heat transfer coefficients and heat flux are obtained from experimental data for each case of specific parameter. The experimental results are assessed and compared with existing correlations. The results show that working fluids, numbers of grooves are very important factors for the operation of thermosyphons. The working fluid with high latent heat such as water has a good heat transfer rate compared to methanol and ethanol. The relatively high rate of heat transfer is achieved when the thermosyphon with internal micro grooves is used compared to that with plain tube. Condensing heat transfer coefficient of grooved thermosyphon is 1.5∼2 times higher in methanol and 1.3∼l.5 times higher in ethanol compared to plain tube. The best condensation heat transfer performance is obtained for 60 grooves, and the maximum value of this case is 2.5 times higher than that of the plain tube.

X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube (X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구)

  • Lee Sang-Joon;Kim Seok;Paik Bu-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

Heat Transfer Characteristics of R-1270 using 12.7mm Inner Fin Tube (12.7mm 내면핀관을 이용한 R-1270의 열전달 특성)

  • Yoon, Jung-In;Seong, Gwang-Hoon;Shim, Gyu-Jin;Jin, Byoung-Ju;Baek, Seung-Moon;Moon, Choon-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.534-541
    • /
    • 2008
  • This paper deals with the heat transfer characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for evaporating. The experimental apparatus has been set-up as conventional vapor compression type refrigeration and air-conditioning system. The test section is a horizontal double pipe heat exchanger. Evaporating heat transfer measurements were performed for smooth tube with the outer diameters of 12.70, 9.52 and 6.35 mm and micro-fin tube 12.70 mm, respectively. For the smooth and micro-fin tubes measured in this study, the evaporating heat transfer coefficient was enhanced according to the increase of the mass flux and decrease of the tube diameter. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Also, the evaporating heat transfer coefficients of R-22 in the tube diameter of the 12.70 mm smooth and micro-fin tube were compared. Generally, the local heat transfer coefficients for both types of tubes increased with an increase of the mass flux. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 1.9 to 2.7 in all experimental conditions.

An Experimental Study on Laminar Heat Transfer in Flat Aluminum Extruded Tubes Having Small Hydraulic Diameter

  • Kim, Nae-Hyun;Ham, Jung-Ho;Kim, Do-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.2
    • /
    • pp.47-53
    • /
    • 2007
  • Laminar heat transfer experiments were conducted in flat extruded aluminum tubes. Three different flat tubes-two with smooth inner channel, one with micro-finned inner channel-were tested. Smooth tube data were in reasonable agreement with the predictions by simplified theoretical models. The heat transfer coefficients of the micro-fin tube were significantly smaller than those of the smooth tube. The reason was attributed to the decelerating flow in the inter-fin region. Heat transfer correlations were developed from the data.

Study of Boiler Tube Micro Crack Detection Ability by Metal Magnetic Memory (금속 자기기억법 활용 보일러 튜브의 미소 결함 검출력 연구)

  • Jungseok, Seo;Joohong, Myong;Jiye, Bang;Gyejo, Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.93-96
    • /
    • 2022
  • The boiler tubes of thermal power plants are exposed to harsh environment of high temperature and high pressure, and the deterioration state of materials rapidly increases. In particular, parent material and welds of the materials used are subjected to a temperature change and various constraints, resulting in deformation and its growth, resulting in frequent leakage accidents caused by tube failure. The power plant checks the integrity of boiler tubes through non-destructive testing as it may act as huge costs loss and limitation of power supply during power station shutdown period due to boiler tube leakage. However, the current non-destructive testing is extremely limited in the field to detect micro cracks. In this study, the ability of metal magnetic memory technique to detect flaws of size that are difficult to inspect by the visual or general non-destructive methods was verified in the early stage of their occurrence.

Micro Pattern Forming on Polymeric Circular Tubes by Hydrostatic Pressing (폴리머 원형 튜브 대상 미세 패턴 정수압 성형)

  • Rhim, S.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.507-512
    • /
    • 2014
  • The objective of the current investigation is to establish techniques in micro pattern forming operations of polymeric circular tubes by using hydrostatic pressing. This method was developed and successfully applied to the micro pattern forming on polymeric plates. The key idea of the new technique is to pressurize multiple vacuum-packed substrate-mold stacks above the glass transition temperature of the polymeric substrates. The new process is thought to be a promising micro-pattern fabrication technique for two reasons; first, (hydro-) isostatic pressing ensures a uniform micro-pattern replicating condition regardless of the substrate area and thickness. Second, multiple curved substrates can be patterned at the same time. With the prototype forming machine for the new process, micro prismatic array patterns, 25um in height and 90 degrees in apex angle, were successfully made on the PMMA circular tubes with diameters of 5~40mm. These results show that this process can be also used in the micro pattern forming process on curved plates such as circular tube.

Measurement of 3D Flow inside Micro-tube Using Digital Holographic PTV Technique (디지털 Holographic PTV기법을 이용한 미세튜브 내부 3차원 유동장 측정)

  • Kim, Seok;Kim, Ju-Hee;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.177-178
    • /
    • 2006
  • Digital holographic particle tracking velocimetry (HPTV) is developed by single high-speed camera and single continuous laser with long coherent length. This system can directly capture 4000 hologram fringe images for 1 second through a camera computer memory. The 3D particle location is made of the reconstruction by using a computer hologram algorithm. This system can successfully be applied to instantaneous 3D velocity measurement in the water flow inside a micro-tube. The average of 100 instantaneous velocity vectors is obtained by reconstruction and tracking with the time of evolution of recorded fringes images. In the near future, we will apply this technique to measure 3D flow information inside various micro structures.

  • PDF

Effects of Oil and Internally Finned Tubes on the Performance of the Air-Conditioning Unit (전열관 형상과 냉동기유 효과를 고려한 공조기기의 성능예측)

  • Yun, J.Y.;Lee, K.S.;Lee, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.388-398
    • /
    • 1994
  • Computer simulation model for predicting more accurately the heat transfer performance of the evaporator and condenser which have significantly affected on the performance of air-conditioner has been suggested. In this model oil and micro-fin tube used in a actual unit are considered to simulate the more realistic case. The effects of oil and micro-fin tube on the performance of an air-conditioner have been investigated. It is found that the present model requires higher pressure than the existing model due to the characteristics of the tube considered. However, it turns out that the present model is very close to an actual cycle. As the amount of oil inside the tube increases, condensation heat transfer coefficient shows a linear decrease irrespective of a kind of oil, while evaporation heat transfer coefficient increases slightly in the oil with low viscosity and decreases exponentially in the oil with high viscosity. Pressure drop in both evaporator and condenser increases linearly irrespective of a kind of oil. It is also found that the effect of the variation of oil concentration on the magnitude of two-phase region is negligible.

  • PDF

Numerical Investigation of Thermo-Fluid Flow for Improvement of Micro-Dilution Chamber on Particulate Deposition (수치적 열유동 해석을 통한 마이크로 희석챔버의 개선)

  • Kim, Sung-Hoon;Lee, Dong-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.637-645
    • /
    • 2009
  • The main purpose of this study lies on the improvement of micro dilution tunnel based on the typical porous tube type chamber. The characteristics of flow and temperature fields for steady state has been obtained by numerical analysis using FLUENT. Three different geometrical variations of the porous tube; a) increase of thickness at center, b) step increase of thickness at center and downstream, c) tapered increase of thickness, have been proposed. Accordingly results are obtained and compared in terms of penetration velocity and velocity ratio to therrmophoretic velocity for improvement against particulate deposition inside the tube. The penetration velocity and velocity ratio distributions in the upstream portion and portion of impinging of dilution air are apparently shown to be improved for the case of the step and tapered change of porous tube. The tapered change of tube thickness addition are shown to be the most effective among three geometrical changes. In addition, the considerable improvement against deposition are shown that its thickness should be at least 2mm.

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.