• Title/Summary/Keyword: Micro-Tip

Search Result 245, Processing Time 0.024 seconds

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

Design and Fabrication of a Micro PZT Cantilever Array Actuator for Applications in Fluidic Systems

  • Kim Hyonse;In Chihyun;Yoon Gilho;Kim Jongwon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1544-1553
    • /
    • 2005
  • In this article, a micro cantilever array actuated by PZT films is designed and fabricated for micro fluidic systems. The design features for maximizing tip deflections and minimizing fluid leakage are described. The governing equation of the composite PZT cantilever is derived and the actuating behavior predicted. The calculated value of the tip deflection was 15 ${\mu}m$ at 5 V. The fabrication process from SIMOX (Separation by oxygen ion implantation) wafer is presented in detail with the PZT film deposition process. The PZT films are characterized by investigating the ferroelectric properties, dielectric constant, and dielectric loss. Tip deflections of 12 ${\mu}m$ at 5 V are measured, which agreed well with the predicted value. The 18 ${\mu}l/s$ leakage rate of air was observed at a pressure difference of 1000 Pa. Micro cooler is introduced, and its possible application to micro compressor is discussed.

Structure Optimization of a Slot-Die Head with a Hydrophobic Micro-Patterns for Stripe Coatings (소수성 마이크로 패턴을 갖는 Stripe 코팅용 슬롯 다이 헤드 구조 최적화)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.6-10
    • /
    • 2019
  • In the presence of $\mu-tip$ for narrow stripe coating, there appears lateral capillary flow along the hydrophilic head lip because the $\mu-tip$ has some resistance to flow. It was known to be suppressed by increasing the contact angle of the head lip. In this paper, we have demonstrated by computational fluid dynamics(CFD) simulations that it can also be suppressed by the formation of micro-patterns on the shim and meniscus guide embedded into the slot-die head. To optimize the micro-patterned structure, we have performed simulations by varying the groove width, depth, and clearance. In the absence of micro-patterns, it is shown by experiment and simulation that the solution spreads to a distance of $1,300{\mu}m$ from the ${\mu}-tip$. In the presence of micro-patterns with the groove width and clearance of $50{\mu}m$, the distance the solution spreads is reduced to $260{\mu}m$. However, no further suppression in the capillary flow is observed with micro-patterns with the groove width of $40{\mu}m$ or less. It is also observed that the capillary flow is not affected by the groove depth if it is larger than $10{\mu}m$. We have shown that the distance the solution spreads can be reduced further to $204{\mu}m$ by coating a hydrophobic material (contact angle of $104^{\circ}$) on the surface of micro-patterns having the groove width and clearance of $50{\mu}m$.

A study on Manufacturing of Micro Dotting Pin (바이오용 마이크로 핀의 제작에 관한 연구)

  • Lee, Young-Soo;Km, Kwang-Soon;Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.21-27
    • /
    • 2003
  • The bio-micro pin is usually used for biochemistry analysis. The capability of manufacturing the micro-pin and array with effective and low-cost way is very important to developers. The micro-pin is composed of "sample channel" putting liquid into already fixed volume, "flat tip" having connection with printing quantity, and "head part" for preventing it from rotation of pin in the holder. We analyzed out printing variation in accordance with shape and tip size of the micro-pin point channel, In this study, we suggested the manufacturing progress and shape demand condition of the micro-pin which could put $0.2{\mu}{\ell}$-biochemistry material into the sample volume, and will be able to produce the micro-pin which can put $10n{\ell}$-biochemistry material into the sample volume in the future.

  • PDF

Manufacturing of Micro Dotting Pin (DNA Chip 용 마이크로 핀에 관한 연구)

  • 신홍규;이영수;남권선;김병희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.500-504
    • /
    • 2004
  • The bio-micro pin has been usually used for the biochemistry analysis. The manufacturing capability of the micro-pin and the their array with the effective and low-cost way is very important and it gives great economical benefits to developers. The micro-pin is composed of the sample channel for holding the liquid with the fixed volume, the flat tip which determines the printing quality and the pin head for preventing the rotation of the pin in the holder. In this study, we have manufactured newly designed micro-pins by the wire-EDM process with special jigs, and analyzed liquid holding and printing characteristics with respect to the variation of the shape and the tip size of the micro-pin.

  • PDF

Reliable design and characterization of MEMS probe tip (신뢰성을 갖는 MEMS 프로브 팁의 설계 및 특성평가)

  • Lee, Seung-Hun;Chu, Sung-Il;Kim, Jin-Hyuk;Seo, Ho-Won;Han, Dong-Chul;Moon, Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1718-1723
    • /
    • 2007
  • The Probe Card is a test component which is to classify the good semiconductor chips before the packaging. The yield of semiconductor product can be better from analysis of probe test information. Recently the technology of the probe card needs narrow width and large amount of probe tip. In this research, the probe tip based on the MEMS(micro electro mechanical system) technology was designed and fabricated to improve the reliability of the test and to meet 2-dimensional Array of tip. The mechanical and electrical properties of proposed tip were evaluated and it has over 100,000 of repetition times in the condition of 5gf, $20{\mu}m$ Over Drive.

  • PDF

Plating Process of Micro-needle for MEMS Probe Card (MEMS Probe Card용 Micro Needle 공정 연구)

  • Han, Myung-Soo;Ahn, Su-Chang;Nam, An-Sik;Kim, Jang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.152-152
    • /
    • 2008
  • Micro probe with Ni-Co tip was designed. Unit processes for fabricating the micro probe were developed. We are investigated the micro probe tip using by Ni-Co alloy. One-step and three-step needle was fabricated by plating process, CMP, and photolithography process. The plating thickness was varied by current density and time. Futher data will be extract by different process conditions.

  • PDF

Analysis of Flow in a Microchannel Branch by Using Micro-PIV Method (마이크로 PIV를 이용한 마이크로 분지관에서의 유동해석)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1015-1021
    • /
    • 2004
  • Micro-resolution Particle Image Velocimetry(Micro-PIV) was used to measure the flow in a micro-branch(Micro-Bypass). In this paper, effects of particle lump at the tip of a Micro-branch and difficulties of Micro-PIV measurements for microfluidics with branch passage were described. Micro-bypass was composed of a straight channel(200(100)${\mu}$m width ${\times}$ 80${\mu}$m height) and two branches which has 100(50)${\mu}$m width ${\times}$ 80${\mu}$m height. One of branches was straight and the other was curved. Experiments were performed at three regions along streamwise direction(entrance, middle and exit of branch) and five planes along vertical direction (0, ${\pm}$10, ${\pm}$20 ${\mu}$m) for the range of Re=0.24, 1.2, 2.4. Numerical simulation was done to compare with the measurements and understand the effects of particle lump at the tip of branch. And another fluid(3% poly vinyl Alcohol aqueous solution) were adapted for this study, so there were no particle sticking. In this case, we could get velocity difference between straight and curved branches.

A Study On Fatigue Properties Of BeCu Thin Film For Probe Tip (프루브 팁용 BeCu 박막의 피로성질 연구)

  • Shin, Myung-Soo;Park, Jun-Hyub;Seo, Jeong-Yun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.256-259
    • /
    • 2008
  • An micro-probe tip must be manufactured using thin film to evaluate integrity of the semiconductor with narrow distance between pads. In this study, fatigue tests were performed for BeCu thin film which is used in micro-probe tip of semiconductor test machine. The thin film was manufactured by electro plating process, and the specimens were fabricated by wire-cut electric discharge method to make hour glass type specimen of $5000{\mu}m$ width, $29200{\mu}m$ length and $30{\mu}m$ thickness. The fatigue test of load control with 10Hz frequency was performed, in ambient environment. The fatigue cycles were tension-tension with mean stress, at stress ratio, R=0.1.

  • PDF