• Title/Summary/Keyword: Micro-Sand

Search Result 137, Processing Time 0.023 seconds

Landform Changes of Terminal Area of the Nagdong River Delta, Korea (낙동강 삼각주 말단의 지형 변화)

  • 오건환
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.67-78
    • /
    • 1999
  • In present, the terminal area of the Nagdong River Delta consists of micro-depositional landforms with sand barrier islands, sand bars and tidal flats which are arranged parallel to the present shoreline, and have rapidly shifted toward sea during last 100 years due to human activities such as construction of estuary dam, industrial complex and residential area. To clarify the landform changes of the area, the author traced the morphologic change pattern based on interpretation of air-photos, topographic maps and old Korean traditional map, and the results are as follows ; Based on the Daedongyeojido, one of the old Korean map, published in 1861, the area including upper part of the delta was underlying by sea level except two larger sand barriers, which means the Nagdong River Delta was not completely formed as the present outline of morphology by 1860s. According to the topographic map(1 :50,000) of 1916, the delta resembled to the present morphology pattern was exposed in 1916, and at this time the area was mainly composed of one sand barrier island, four sand bars and tidal flats, which had slowly elongated southwards before construction of the Nagdong River Estuary Dam in 1987. But after 1987, the area has been rapidly and drastically shifted southwards in arrange with one chain of sand barrier islands (Elsugdo -Myeonghodo-Sinhodo ) and four chains of sand bars (first chain ; Jinwoodo -Daemadeung-Maenggeummeorideung, second chain : Jangjado-Baeghabdeung, third chain ; Saedeung-Namusitdeung, fourth : Doyodeung-Dadaedeung) parallel to shoreline. This rapid landform change of the area is now occurring, and is seemed to ascribed firstly, to the construction of the Nagdong River Estuary Dam on Elsugdo in 1987, the Sinho Industrial Complex on Sinhodo and Myeongji Residential Area on Myeonghodo in 1992, secondly, to artificial alteration of drainage channel and consequential breakdown of former energy system between riverflow and tidal-and wave-energy. From these facts, it is inferred that the landform change pattern of the area will continue until a new equilibrium between the factor available to this energy system is accomplished.

  • PDF

Diversity and Zonation of Vegetation Related Micro-Topography in Sinduri Coastal Dune, Korea - Focused on the Natural Monument Area - (신두리 해안사구의 미지형별 식생의 대상구조와 다양성 변화 - 천연기념물 지정지를 중심으로 -)

  • Song, Hong-Seon;Cho, Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.21 no.3
    • /
    • pp.290-298
    • /
    • 2007
  • The results of this research on the diversity, zonation of vegetation and micro-topography by TWINSPAN classification and DECORANA ordination, executed with Sinduri coastal dunes of Korea, are as follows: The vegetation and micro-topography of coastal dunes formed a noticeably clear zonation structure. The beach in the direction of the coastline saw a lot of appearance of Salsola komarovi and the primary dune was dominated by Elymus mollis. Imperata cylindrica var. koenigii and Carex pumila formed a colony at flat area of the sand hills and Calamagrostis epigeios was widely distributed at the wet slack. The secondary dune was dominated mostly by Ischaemum anthephoroides and Imperata cylindrica var. koenigii, and it showed an aspect of the distribution of Vitex rotundifolia and Rosa rugosa. while the hinterland hillside in the direction of inland was dominated by Robinia pseudo-acacia and Pinus thunbergii. However, Carex kobomugi, known as the pioneer species of the coastline-bound areas at the coastal dune, dominantly occupied the secondary dune of the rear side and continentally-inclined Miscanthus sinensi and Oenothera biennis of naturalized plant were irregularly spread over the whole of the coastal dune, so the stabilization of micro-topography seemed to be uncertain. Particularly, Miscanthus sinensis was predicted to be changed into dominant species of the primary dune, and secondary dune and slack having a commonly high species gathering inclination with the more progress of stabilization of the coastal dune. The expansion of sand hill wetlands and roads located between the primary dune and secondary dune was judged to have an effect on the zonation structure of plant distribution.

The Effects of the Breadth of Foundation and Rock Layer on the Installation Method of Micro-piles (기초 폭 및 암반층의 영향을 고려한 마이크로파일 설치방안에 관한 연구)

  • Hwang, Tae-Hyun;Kim, Ji-Ho;Kwon, Oh-Yeob
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.29-38
    • /
    • 2010
  • Micro-piles have been used to increase the bearing capacity or to restrain settlement of existing shallow foundation. Recently, micro-piles are used to support the shallow foundation, to stabilize the slope and to resist the sliding of retaining wall. Using the micro-piles in geotechnical engineering, some investigators have studied the effective installing method by model test or field test. But most of previous studies are chiefly focused on the micro-piles in sand or clay layer. If a rock layer exists in soil, the installing length of micro-piles may be determined by the depth of rock layer. In this case, the stiffness of pile may be changed by the installing length of pile, and so the installing method has to be altered by the changed stiffness of pile. Model tests have been conducted to study the installation method of micro-pile in soil with rock layer. As a result, when the ratio of length of pile is below 50 ($L/d{\leq}50$), installing of micro-piles in vertical position is effective regardless of the depth of rock layer. If the depth of rock layer is deeper than soil failure zone and the ratio of the length of pile exceeds 50 (L/d>50), installing of the micro-piles in sloped position is effective.

Plant Growth-promoting Ability by the Newly Isolated Bacterium Bacillus aerius MH1RS1 from Indigenous Plant in Sand Dune (해안 사구에서 서식하는 토착식물로부터 분리된 근권미생물 Bacillus aerius MH1RS1의 식물성장 촉진 능력 연구)

  • Lee, Eun Young;Hong, Sun Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.687-693
    • /
    • 2013
  • Coastal sand dunes have been seriously damaged caused by the development thoughtless for the environment and coastal erosion and destruction due to artificial structures like coast roads and breakwater. Hereupon, in this study we made a library of rhizobacteria that have the plant growth-promoting ability for plant rhizosphere of indigenous plants inhabiting in a coastal sand dune as well as the strong tolerance to salt, and evaluated the plant growth-promoting ability of these strains. Furthermore, we evaluated the effect of rhizobacteria on the growth rate of saline tolerant plants in sandy soil; selected out the most useful micro-organism for the restoration of a damaged sand dune. The effect of inoculation of strains selected from the first experiment on the growth of Peucedanum japonicum and Arundo donaxes planted in a coastal sand dune was evaluated. As a result, Bacillus aerius MH1RS1 had plant growth promoting activities: indole acetic acid (IAA) production, siderophores and 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) activity, and also had a salinity tolerance. Also, in case of Peucedanum japonicum, the length of stems and weights of roots were enhanced by the inoculation of B. aerius MH1RS1. Fresh weights of stems and weights of roots in experimental group were, in particular, increased by 25% comparing with the control group. For an Arundo donax in experimental group, plant length increased by 18%, and weight of roots by 20% which is significant.

Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System (Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거)

  • Sohn, Jin-Sik;Park, Soon-Ho;Jung, Eui-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

Authentication Test of Archaeological Materials using Single Grain Regenerative Dose Method (단일입자재현법(單一粒子再現法)을 활용한 고고유물의 진위판별 연구)

  • Kim, Myung-Jin;Youn, Min-Young;Hong, Duk-Geun
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.73-80
    • /
    • 2008
  • This article aims to turn out the authentication of archaeological materials by using the paleodose measurement to fine sand-size quartz grains obtained by micro sampling technique. We firstly revealed the validity of micro sampling technique from the paleodoses of two bricks related to Muryong Royal Tomb of Baekje Kingdom. For the purpose of authentication test, four archaeological materials were selected, because they have been insisted that they were manufactured in Goguryeo Kingdom era. After obtaining very few quartz grains by micro sampling technique, each paleodose was evaluated by using SGR (single grain regenerative dose method). All values were very low below 0.2Gy and the reliability was found from those values by using SAR (single aliquot regenerative dose method). Considering the archaeological situation and the general paleodose, the burial time for 1,000 years generally corresponds to about 3.5Gy in Korea, it is concluded that these archaeological materials are all modern counterfeits.

  • PDF

Development of Application Block Using Geobond and Ash from Sewage Sludge Incinerator II (하수슬러지 소각재와 무기바인더를 이용한 응용 블록 개발 II)

  • Lee, Hyun-joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.412-417
    • /
    • 2015
  • This study investigated to recycle geobond and ash produced in thesewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement (High Early Strength Portland cement, Micro cement), geobond and sand mixed with sewage sludge ash (SSA). Chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting High Early Strength Portland cement, Micro cement and geobond. Results showed that unconfined the long term compressive strength could be obtained components of sewage sludge ash. It exceeded more than double score 64.6 MPa of the Korean standard ($22.54MPa=229.7kg/cm^2$). Microstructure of solidified block for the different admixture was related to the compressive strength according to SEM analysis. Optimum mixing range of the sewage sludge ash to each binders were found to be 10~40% which can widly safely regulate the confined a long term compressive strength. The best binder of long term compressive strengh was revealed Geobond more than High Early Strength Portland cement and Micro cement. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder & application block for recycling.

Sedimentary Environments in the Coastal areas of Imja to Nakweol Islands (임자도-낙월도간 해역의 퇴적환경)

  • 유환수;고영구
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.241-258
    • /
    • 1993
  • To investigate the sedimentary environments on the coastal areas of Imja to Nakweol islands which show very complex shorelines and several zonal sand ridges in NE-SW direction, southwestern coast of Korea, a total of forty samples were taken by a grab sampler and sedimentological and micropaleontological studies on those samples were carried out. The present study area are classified into muddy sandy gravel, sand, city sand, sandy silt and silt facies. With statistical moment parameters such as mean, sorting, skewness and ketosis for the sediments in the study area, the sediments are generally categorized as shallow sedimentary facies. The characters that are observed in quartz grains among the sandy sediments of the study area imply the existence of high energy environments, temporal exposures in atmosphere and the mixing of clastic sediments of the several different origins. In the sediments of the study area, one genera belonging to six silicoflagellata species and five genera belonging to five nannoplankton species were detected. On the basis of the micro-organism assemblage, the study area seems to be influenced by active reworking dominantly under warm water masses. In addition, organic matter ad carbonate contents in the sediments did not show a definite relation with the occurrences of the micro-organisms in the study area.

  • PDF

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.