• 제목/요약/키워드: Micro-Branch

검색결과 95건 처리시간 0.029초

착체중합법을 이용한 SrAl2O4: Eu2+, Dy3+ 축광성 형광체의 합성 (Synthesis and Characteristics of SrAl2O4: Eu2+, Dy3+ Long Afterglow Phosphors by Polymerized Complex Method)

  • 김태호;황해진;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.561-569
    • /
    • 2016
  • $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphorescent phosphors were synthesized using the polymerized complex method. Generally, phosphorescent phosphors synthesized by conventional solid state reaction show a micro-sized particle diameter; thus, this process is restricted to applications such as phosphorescent ink and paint. However, it is possible to synthesize homogeneous multi-component powders with fine particle diameter by wet process such as the polymerized complex method. The characteristics of $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ powders prepared by polymerized complex method with one and two step calcination processes were comparatively analyzed. Temperatures of organic material removal and crystallization were observed through TG-DTA analysis. The crystalline phase and crystallite size of the $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphorescent phosphors were analyzed by XRD. Microstructures and afterglow characteristics of the $SrAl_2O_4$: $Eu^{2+}$ and $Dy^{3+}$ phosphors were measured by SEM and spectrofluorometry, respectively.

Bioinformatics Study and Experimental Evaluation of miR-182, and miR-34 Expression Profiles in Tuberculosis and Lung Cancer

  • Leila Alimardanian;Bahram Mohammad Soltani;Shiva Irani;Mojgan Sheikhpour
    • Tuberculosis and Respiratory Diseases
    • /
    • 제87권3호
    • /
    • pp.398-408
    • /
    • 2024
  • Background: Lung cancer is one of the most dangerous cancers and tuberculosis is one of the deadliest infectious diseases in the world. Many studies have confirmed the connection between lung cancer and tuberculosis, and also the microRNAs (miRNAs) that play a major role in the development of these two diseases. This study aims to use different databases to find effective miRNAs and their role in different genes in lung and tuberculosis diseases. It also aims to determine the role of miR-34a and miR-182 in lung cancer and tuberculosis. Methods: Using the Gene Expression Omnibus (GEO) database, the influential miRNA databases were studied in the two diseases. Finally, considering bioinformatics results and literature studies, two miR-34a and miR-182 were selected. The role of these miRNAs and their target genes was carefully evaluated using bioinformatics. The expression of miRNAs in the plasma of patients with lung cancer and tuberculosis and healthy individuals was investigated. Results: According to the GEO database, miR-34a and miR-182 are miRNAs that affect tuberculosis and lung cancer. By checking the miRBase, miRcode, DIANA, miRDB, galaxy, Kyoto Encyclopedia of Genes and Genomes databases, the role of these miRNAs on genes and different molecular pathways and their effect on these miRNAs were mentioned. The results of the present study showed that the expression of miR-34a and miR-182 was lower than that of healthy people. The p-value for miR-182 was <0.0001 and for miR-34a was 0.3380. Conclusion: Reducing the expression pattern of these miRNAs indicates their role in lung cancer and tuberculosis occurrence. Therefore, these miRNAs can be used as a biomarker for prognosis, diagnosis, and treatment methods.

Investigation of mechanical surface treatment effect on the properties of titanium thin film

  • Ehsan Bazzaz;Abolfazl Darvizeh;Majid Alitavoli;Mehdi Yarmohammad Tooski
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.33-49
    • /
    • 2024
  • Using the mechanical treatments for mechanical properties improvement was rarely in the development scope before. This research approves through analytical ways that surface impacts can improve the quality of the surface significantly. This fact is approved for deposited titanium on silicone substrate. The new algorithm called minimum resultant error method (MREM) which is a direct combination of nanoindentation, FEM and dimensional analysis through a reverse method is utilized to extract the mechanical characteristics of the coating surface before and after impact. This method is extended to the time dependent behavior of the material to obtain strain rate coefficient. To implement this new approach, a new analysis technic is developed to define the residual stress field caused by surface impact as initial condition for nanoindentation. Analyzing the model in micro and macro scale at the same time was one of the main resolved challenges in this study. The result was obtaining of the constants of Johnson-Cook constitutive equation. Comparing the characteristics of the coating surface before and after impact shows high improvement in yield stress (34%), Elastic modulus (7.75%) and strain hardening coefficient (2.8%). The main achievement is that the strength improvement in titanium thin layer is much higher than bulk titanium. The yield strength shows 41.7% improvement for coated titanium comparing with 24% for bulk material. The rate of enhancement is about 6 times when it comes to the Young's modulus.

전자빔 증착을 위한 소결체 지르코니아의 열충격 저항성 연구 (A Study on the Thermal Shock Resistance of Sintered Zirconia for Electron Beam Deposition)

  • 오윤석;한윤수;채정민;김성원;이성민;김형태;안종기;김태형;김동훈
    • 한국추진공학회지
    • /
    • 제19권3호
    • /
    • pp.83-88
    • /
    • 2015
  • 열차폐 코팅(Thermal Barrier Coating) 기술의 하나로 연구되는 전자빔(EB, Electron Beam) 증착에 사용되는 코팅재료는 증착 공정 중에 고출력의 전자빔이 조사되기 때문에, 균일코팅을 위해서는 증착 중 코팅재료의 형상유지 및 안정한 융탕 형성이 필요하며, 이를 위해 적절한 밀도와 미세구조를 갖춘 잉곳(Ingot) 형태의 코팅소스가 요구된다. 본 연구에서는 8 wt%의 이트리아($Y_2O_3$)가 안정화제로 첨가된 지르코니아(8YSZ) 조성을 활용하여, 고출력 전자빔 조사환경에 사용가능한 잉곳제조를 위해 최적의 원료분말 조건을 확보하고자 하였다. 제조된 잉곳시료들에 대한 전자빔 조사 시, 수십 마이크론과 수십 나노 크기의 입자들로 구성된 혼합형 분말로 제조된 잉곳의 경우, 나노크기의 분말만으로 제조된 경우보다 향상된 열충격 저항성을 보였다.

Immobilization of the Thenoyltrifluoroacetone on Sodium Dodecyl Sulfate Modified Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb (II) from Water Samples

  • Sadeghi, Meysam;Yekta, Sina;Babanezhad, Esmaeil
    • Korean Chemical Engineering Research
    • /
    • 제54권5호
    • /
    • pp.636-647
    • /
    • 2016
  • Magnetite nanoparticles ($Fe_3O_4$ NPs) were synthesized by co-precipitating method under optimized condition. The $Fe_3O_4$ NPs coated with sodium dodecyl sulfate-thenoyltrifluoroacetone ($Fe_3O_4$ NPs-SDS-TTFA) were then exerted as the magnetic solid phase extraction (MSPE) adsorbent for the extraction process prior to introducing to a flame atomic adsorption spectrometry (FAAS). The synthesized $Fe_3O_4$ NPs-SDS-TTFA were applied for the extraction of Pb(II) ions from different water samples. The characterization studies of nanoparticles were performed via scanning electron microscopy-energy dispersive micro-analysis (SEM-EDAX), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. The substantial parameters affecting the extraction efficiency were surveyed and optimized. A dynamic linear range (DLR) of $10-400{\mu}g\;L^{-1}$ was obtained and the limit of detection (LOD, n=7) and relative standard deviation (RSD%, n= 6, $C=20{\mu}g\;L^{-1}$) were found to be $2.3{\mu}g\;L^{-1}$ and 1.9%, respectively. According to the results, the proposed method successfully applied for the extraction of Pb(II) ions from different environmental water samples and satisfactory results achieved.

A Study on Performance Analysis of the Helically Coiled Evaporator with Circular Minichannels

  • Kim Ju-Won;Im Yong-Bin;Kim Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.1059-1067
    • /
    • 2006
  • In order to develop a compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled minichannel were performed in our previous research. This study was focused on the performance analysis of helically coiled heat exchangers with circular minichannels with an inner diameter=1.0 mm. The working fluid was R-22, and the properties of R-22 were estimated using the REFPROP program. Numerical simulation was performed to compare results with the experimental results of the helically coiled heat exchanger. As the heat transfer rate and pressure drop were calculated at the micro segment of the branch channels, the performance of the evaporator was evaluated. The following conclusions were obtained through the numerical simulations of the helically coiled heat exchanger. It showed good performance when the flow rate of each branch channels was suitable to heat load of air-side. The numerical simulation value agreed with experimental results within ${\pm}15%$. In this study, a numerical simulation program was developed to estimate the performance of a helically coiled evaporator. And, an optimum helically coiled minichannels evaporator was designed.

Leakage-free Rotating Seal Systems with Magnetic Nanofluids and Magnetic Composite Fluids Designed for Various Applications

  • Borbath, Tunde;Bica, Doina;Potencz, Iosif;Borbath, Istvan;Boros, Tibor;Vekas, Ladislau
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.67-75
    • /
    • 2011
  • Recent results are presented concerning the development of magnetofluidic leakage-free rotating seals for vacuum and high pressure gases, evidencing significant advantages compared to mechanical seals. The micro-pilot scale production of various types of magnetizable sealing fluids is shortly reviewed, in particular the main steps of the chemical synthesis of magnetic nanofluids and magnetic composite fluids with light hydrocarbon, mineral oil and synthetic oil carrier liquids. Design concepts and some constructive details of the magnetofluidic seals are discussed in order to obtain high sealing capacity. Different types of magnetofluidic sealing systems and applications are reviewed. Testing procedures and equipment are presented, as well as the sealing capabilities of different types of magnetizable fluids.

Mechanical and wear properties evaluation of Al/Al2O3 composites fabricated by combined compo-casting and WARB process

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • 제7권2호
    • /
    • pp.129-137
    • /
    • 2022
  • Compo-casting method is one of the popular technique to produce metal based matrix composites. But, one of the main challenges in this process is un-uniform spreading of reinforced subdivisions (particles) inside the metallic matrix and the lack of desirable mechanical properties of the final produced composites due to the low bonding strength among the metal matrix and reinforcement particles. To remove these difficulties and to promote the mechanical properties of these kind of composites, the WARM ARB technique was utilized as supplementary technique to heighten the mechanical and microstructural evolution of the casted Al/Al2O3 composite strips. The microstructure evolution and mechanical properties of these composites have been considered versus different WARM ARB cycles by tensile test, average Vickers micro hardness test, wear test and scanning electron microscopy (SEM). The SEM results revealed that during the higher warm- ARB cycles, big alumina clusters are broken and make a uniform distribution of alumina particles. It was shown that cumulating the forming cycles improved the mechanical properties of composites. In general, combined compo-casting and ARB process would consent making Al/Al2O3 composites with high consistency, good microstructural and mechanical properties.

변동하중하에서의 피로크랙 지연현상과 지연기구에 관한 연구 - 균열성장 지연현상에 미치는 균열 가지의 영향 - (A Study on Fatigue Crack Retardation and Retardation Mechanism in Variable Loading)

  • 송삼홍;권윤기
    • 한국정밀공학회지
    • /
    • 제14권6호
    • /
    • pp.83-89
    • /
    • 1997
  • In order to study on fatigue crack retardation and retardation mechanism in variable loading, the effects of crack tip branching in fatigue crack growth retardation were examined. The characteristics of crack tip banching behavior was considered to micro structure. It was examined that the variation of crack tip branching angle. Crack tip branching was observed along the grain boundary of ferrite and pearlite structure. It was found that the abanching angle ranges from 25 to 53 degrees. Using the finite element method, the variable of crack driving force to branching angle was examined. The effective crack driving force ( $K_{\eff}$ ) decreased as the braching angle increases. The rate of decrease was 33% for the kinked type and 29% for the forked one. It was confirmed that the effect of crack tip branching is a very important factor in fatigue crack growth retardation. Therefore, crack branching effect should be considered building the hypoth- etical model to predict crack growth retardation.

  • PDF

시설재배용 분수호스 및 점적관수 시스템의 관수균일도 분석 (Discharge Variation of Perforated Hoses and Drip Irrigation Systems for Protected Cultivation)

  • 남상운;김영식
    • 생물환경조절학회지
    • /
    • 제16권4호
    • /
    • pp.297-302
    • /
    • 2007
  • 점적관수 자재 및 분수호스의 관수균일도 실험결과 사용압력과 배관길이에 따라 유출량의 차이가 큰 것으로 나타났다. 점적관수 중에서는 점적단추의 관수 균일도가 가장 높았고, 점적테잎, 점적호스의 순으로 나타났다. 관의 직경과 길이 및 유량에 따라 다르지만 마찰에 의한 압력손실이 상당히 크므로 점적관수의 사용압력과 배관길이 선택에 주의할 필요가 있다. 제품에 따라 약간의 차이는 있었지만 대체로 점적호스는 50m, 점적테잎은 70m 정도를 최대 배관길이로 제한하는 것이 바람직할 것으로 판단되었다. 점적단추는 실험에서 설정한 최대길이인 100m까지도 사용이 가능한 것으로 사료된다. 그러나 관수시스템의 압력을 체크하여 충분한 압력을 확보하고 있는지 검토할 필요가 있고, 부족시 별도의 가압펌프를 설치하여 적정압력 범위를 만족할 수 있도록 하며 물구멍이 막히지 않도록 필터를 설치하고 수질을 관리하는 등의 유지관리가 필요한 것으로 판단되었다. 분수호스의 경우에는 균등계수가 매우 낮아 균일한 관수를 기대할 수 없는 것으로 나타났다. 따라서 균일한 관수 제어를 필요로 하는 높은 수준의 시설재배에서는 가능한 한 점적관수를 사용하고, 비교적 낮은 수준의 배지수분 관리가 이루어지는 시설재배에서도 분수호스를 이용할 경우 배관길이를 $30{\sim}35m$이내로 제한하는 것이 바람직할 것으로 판단된다.