• 제목/요약/키워드: Micro tool wear

검색결과 97건 처리시간 0.029초

레이저 빔 가공과 방전 가공을 이용한 복합 미세 가공 (Micromachining Using Hybrid of Laser Beam and Electrical Discharge Machining)

  • 김산하;정도관;김보현;오광환;정성호;주종남
    • 한국정밀공학회지
    • /
    • 제26권10호
    • /
    • pp.108-115
    • /
    • 2009
  • Although nanosecond pulsed laser drilling and milling are rapid and non-wear processes in micromachining, the quality cannot meet the precision standard due to the recast layer and heat affected zone. On the other hand, electrical discharge machining (EDM) is a well-known high precision machining process in micro scale; however, the low material removal rate (MRR) and tool wear remain as drawbacks. In this paper, hybrid process of laser beam machining (LBM) using nanosecond pulsed laser and micro EDM was studied for micro drilling and milling. While the quality of the micro structure fabricated by this hybrid process remains as high as direct EDM, the machining time and tool wear can be reduced. In addition, variable depth of layer was introduced as an effective method improving efficiency of hybrid milling.

마이크로 금형 부품을 위한 마이크로 절삭가공 기술 (Micro cutting process technology for micro molds parts)

  • 하석재;박정연;김건희;윤길상
    • Design & Manufacturing
    • /
    • 제13권1호
    • /
    • pp.5-12
    • /
    • 2019
  • In this paper, we studied the micro tool deflection, micro cutting with low temperature, and deformation of micro ribs caused by cutting forces. First, we performed an integrated machining error compensation method based on captured images of tool deflection shapes in micro cutting process. In micro cutting process, micro tool deflection generates very serious problems in contrast to macro tool deflection. To get the real images of micro tool deflection, it is possible to estimate tool deflection in cutting conditions modeled and to compensate for machining errors using an iterative algorithm correcting tool path. Second, in macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this passibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed. Third, the micro pattern was deformed by the cutting forces and the shape error occurred in the sidewall multi-step cutting process were minimized. As the results, the relationship between the cutting conditions and the deformation of micro-structure during micro cutting process was investigated.

초경소재 재활용을 위한 플랫 엔드밀공구의 재연삭 효과 (Regrinding Effect of Flat End-Mill Tool for Recycling of Tungsten Carbide (WC-Co) Material)

  • 강명창;김민욱;권동희;박인덕;정영근
    • 한국재료학회지
    • /
    • 제18권12호
    • /
    • pp.635-639
    • /
    • 2008
  • In this paper, experimental studies of the regrinding of tungsten carbide (WC-Co) tools for high-speed machining were conducted. Regrinding and a subsequent evaluation test were carried out for a flat endmill tool with diameters of 10 mm and 3 mm using a CNC five-axis tool grinder and a CNC three-axis machining center. Tool wear on the two types of endmill tools increased as the cutting length increased, and the tool wear was not influenced by the regrinding state. In case of the micro endmill with a tool diameter of 3 mm, the effective regrinding time was determined for a flank wear threshold of 0.3 mm considering the tool life according to cutting length. The tool lives of the 10 mm and 3 mm endmill tools were increased by 80% and 72%, respectively. This conclusion proves the Feasibility of the recycling of tungsten carbide materials in the high-speed machining of high-hardened materials for industrial applications.

C-means 알고리즘을 이용한 마이크로 엔드밀의 상태 감시 (Condition Monitoring of Micro Endmill using C-means Algorithm)

  • 권동희;정연식;강익수;김전하;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.162-167
    • /
    • 2005
  • Recently, the advanced industries using micro parts are rapidly growing. Micro endmilling is one of the prominent technology that has wide spectrum of application field ranging from macro to micro parts. Also, the method of micro-grooving using micro endmilling is used widely owing to many merit, but has problems of precision and quality of products due to tool wear and tool fracture. This study deals with condition monitoring using acoustic emission(AE) signal in the micro-grooving. First, the feature extraction of AE signal directly related to machining process is executed. Then, the distinctive micro endmill state according to the each tool condition is classified by using the fuzzy C-means algorithm, which is one of the methods to recognize data patterns. These result is effective monitoring method of micro endmill state by the AE sensing techniques which can be expected to be applicable to micro machining processes in the future.

  • PDF

Type 316LN 스테인리스강의 절삭특성과 가공 변질층 (Cutting Characteristics and Deformed Layer of Type 316LN Stainless Steel)

  • 오선세;이원
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.196-205
    • /
    • 2004
  • The cutting characteristics and the deformed layer of nitrogen(N)-added type 316LN stainless steel were comparatively investigated to type 316L stainless steel. The cutting force, the surface roughness(Ra) and the tool wear in face milling works were measured with cutting conditions, and the deformed layers were obtained from micro-hardness testing method. The cutting resistance of type 316LN was similar to type 316L in spite of its high strength. The surface roughness of type 316LN was superior to type 316L for all the cutting conditions. In particular, in the high cutting speed above 345m/min, the surface roughness of the two stainless steels was closely same. The deformed layer thickness of the two stainless steels was generated in the 150$\mu\textrm{m}$-300$\mu\textrm{m}$ ranges, and its value of type 316LN was lower than that of type 316L. This is due to the high strength properties by nitrogen effect. It was found that type 316LN was higher in the tool wear than that type 316L, and flank wear was dominant to crater wear. In face milling works of type 316LN steel, tool wear is regarded as a important problem.

마이크로 드릴링을 이용한 미세압출다이 가공에 관한 연구 (A study on the machining of micro-extruding die using micro-drilling)

  • 민승기;제태진;이응숙;이동주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.161-166
    • /
    • 2003
  • The micro-extruding die is a die for manufacturing of fine-wire by extruding process. The fine-wire made from the micro-extruding can be effectively applied to fields of semiconductor parts and medical parts etc. It is predicted that the demand of fine-wire in industry is more and more increasing. In this study $\phi50\mu m$ micro-drill which is coated with diamond is used for drilling of super micro-hole sizes. For the machining of taper parts of entrance and exit, drill having $\phi50\mu\textrm{mm}$ inclination angle $20^{\circ}$and angle $30^{\circ}$ is used. This is useful for anti tool-breakage and excessive too-wear in drilling process. After micro-drilling, the polishing process by diamond abrasive and polishing wood s carried out for increasing surface roughness.

  • PDF

미세 방전을 이용한 3차원 미세 구조물 및 미세 공구 제작 (Fabrication of 3-D Micro Structure and Micro Tool Using MEDM)

  • 김보현;이상민;주종남;강영훈;최태훈;박훈재;이영수
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.251-256
    • /
    • 2005
  • 3-D micro structures and micro tools were fabricated using Micro Electrical Discharge Machining (MEDM). To make micro structures, micro electrical discharge milling process was applied. During micro electrical discharge milling, electrode (tool) worn in the both axial and radial direction. To compensate tool wear which has significant influence on machining accuracy, machining path overlapping was proposed. Machining characteristics of micro electrical discharge milling was investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools were also fabricated using REDM (reverse electrical discharge machining). Sacrificial electrodes were machined through electrical discharge milling process and were used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' were fabricated. With these complex shaped tools, micro machining was successfully applied repeatedly.

미세 방전을 이용한 3차원 미세 구조물 제작 및 미세 공구 제작 (Fabrication of 3-D Micro Structure and Micro Tool Using MEDM)

  • 이영수;김보현;이상민;주종남;강영훈;최태훈;박훈재
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제3회 금형가공 심포지엄
    • /
    • pp.255-259
    • /
    • 2004
  • 3-D micro structures and micro tools are fabricated using MEDM (Micro Electric Discharge Machining). To make micro structures, micro electro discharge milling process is applied. During micro electro discharge milling, electrode (tool) wears both axial and radial direction. To compensate tool wear which influences significantly machining accuracy, overlap machining path is proposed. Machining characteristics of micro electro discharge milling is investigated in considering of depth of cut and capacitance of discharge circuit. Micro complex shaped tools are fabricated using REDM (reverse electro discharge machining). Sacrificial electrode is machined through electro discharge milling process and is used as electrode to make micro tools. Using this process several micro tools shape of 'ㄷ', 'ㅁ' and 'o' are fabricated. With these complex shaped tools, micro machining is successfully applied repeatedly.

  • PDF

초음파 진동을 이용한 취성재료의 가공기술에 관한 연구 (A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration)

  • 이석우;최헌종;이봉구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

탈수이온수를 절연액으로 사용한 미세 방전 밀링 (Micro EDM Milling Using Deionized Water as Dielectric Fluid)

  • 정도관;김보현;주종남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.546-549
    • /
    • 2005
  • Micro EDM milling using deionized water as dielectric fluid was investigated. After machining micro grooves using deionized water with different voltage. capacitance. and resistivity of deionized water, machining characteristics were investigated. The wear of a tool electrode and the machining time can be reduced by using deionized water instead of kerosene. Micro hemispheres were machined in deionized water and kerosene and their machining characteristics were compared.

  • PDF