• Title/Summary/Keyword: Micro thermal imprinting

Search Result 9, Processing Time 0.027 seconds

Development of Roll-to- Flat Thermal Imprinting Equipment and Experimental Study of Large Area Pattern Replication on Polymer Substrate

  • Lee, Moon-G.;Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Ni, Jun;Sung, Yeon-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.307-314
    • /
    • 2009
  • Large area micro pattern replication has promising application potential in many areas. Rolling imprint process has been demonstrated as one of the most competitive processes for such micro pattern replication, because it has advantages in low cost, high throughput and high efficiency. In this paper, we developed a prototype of roll-to-flat(R2F) thermal imprint system for large area micro pattern replication process, which is one of the key processes in the fabrication of flexible displays. Experimental tests were conducted to evaluate the feasibility of system and the parameters' effect on the process, such as flat mold temperature, loading pressure and rolling speed. 100mm $\times$ 100mm stainless steel flat mold and commercially available polycarbonate sheets were used for the tests. The experimental results showed that the developed R2F system is suitable for fabrication of various micro devices with micro pattern over large area.

  • PDF

Design and fabrication of wafer scale microlens array for image sensor using UV-imprinting (UV 임프린팅을 이용한 이미지 센서용 웨이퍼 스케일 마이크로렌즈 어레이 설계 및 제작)

  • Kim, Ho-Kwan;Kim, Seok-Min;Lim, Ji-Seok;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.100-103
    • /
    • 2007
  • A microlens array has been required to improve light conversion efficiency in image sensors. A microlens array can be usually fabricated by photoresist reflow, hot-embossing, micro injection molding, and UV-imprinting. Among these processes, a UV-imprinting, which is operated at room temperature with relatively low applied pressure, can be a desirable process to integrate microlens array on image sensors, because this process provides the components with low thermal expansion, enhanced stability, and low birefringence, furthermore, it is more suitable for mass production of high quality microlens array. In this study, to analyze the optical properties of the wafer scale microlens array integrated image sensor, another wafer scale simulated image sensor chip array was designed and fabricated. An aspherical square microlens was designed and integrated on a simulated image sensor chip array using a UV-imprinting process. Finally, the optical performances were measured and analyzed.

  • PDF

Experimental and Numerical Study on the Viscoelastic Property of Polycarbonate near Glass Transition Temperature for Micro Thermal Imprint Process (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링)

  • Lan, Shuhuai;Lee, Hey-Jin;Lee, Hyoung-Wook;Song, Jung-Han;Lee, Soo-Hun;Ni, Jun;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.70-73
    • /
    • 2009
  • The aim of this research is to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature. An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model from the test data. Further validation of the model and parameters was performed by comparing the analysis of FE model results to the experimental data.

  • PDF

Development of Thermal Imprint System for Net-Shape Manufacturing of Multi-layer Ceramic Structure (세라믹 정형 가공을 위한 성형기 개발)

  • Park, C.K.;Rhim, S.H.;Hong, J.P.;Lee, J.K.;Yoon, S.M.;Ko, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.401-404
    • /
    • 2008
  • In the present investigation, a high precision thermal imprint system for micro ceramic products was developed and the net-shape manufacturing of multi-layer ceramic reflector for LED (Light Emitting Diode) was conducted with a precision metal die. Workpiece used in the present investigation were the multi-layer laminated ceramic sheets with pre-punched holes. The cavity with arbitrary angle was formed on the circular and rectangular holes of the ceramic sheets. During the imprinting process, the ambient temperature of the imprint system was kept over the transition temperature of the ceramic sheet and then rapidly cooled. The results in this paper show that the present method can be successfully applied to the fabrication of very small size hole array for ceramic reflector in a one step operation.

  • PDF

Viscoelastic Finite Element Analysis of Filling Process on the Moth-Eye Pattern (모스아이 패턴의 충전공정에 대한 점탄성 유한요소해석)

  • Kim, Kug Weon;Lee, Ki Yeon;Kim, Nam Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1838-1843
    • /
    • 2014
  • Nanoimprint lithography (NIL) fabrication process is regarded as the main alternative to existing expensive photo-lithography in areas such as micro- and nano-electronics including optical components and sensors, as well as the solar cell and display device industries. Functional patterns, including anti-reflective moth-eye pattern, photonic crystal pattern, fabricated by NIL can improve the overall efficiency of such devices. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. In this paper, a cavity-filling process of the moth-eye pattern during the thermal-NIL within the temperature range, where the polymer resist shows the viscoelastic behaviors with consideration of stress relaxation effect of the polymer, were investigated with three-dimensional finite element analysis. The effects of initial thickness of polymer resist and imprinting pressure on cavity-filling process has been discussed. From the analysis results it was found that the cavity filling can be completed within 100 s, under the pressure of more than 4 MPa.