• Title/Summary/Keyword: Micro structuring

Search Result 21, Processing Time 0.03 seconds

Pulsed Electrochemical Deposition for 3D Micro Structuring

  • Park, Jung-Woo;Ryu, Shi-Hyoung;Chu, Chong-Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • In this paper, micro structuring technique using localized electrochemical deposition (LECD) with ultra short pulses was investigated. Electric field in electrochemical cell was localized near the tool tip end region by applying pulses of a few hundreds of nano second duration, Pt-Ir tip was used as a counter electrode and copper was deposited on the copper substrate in mixed electrolyte of 0.5 M $CuSO_4$ and 0.5 M $H_2SO_4$, The effectiveness of this technique was verified by comparison with ECD using DC voltage. The deposition characteristics such as size, shape, surface, and structural density according to applied voltage and pulse duration were investigated. The proper condition was selected based on the results of the various experiments. Micro columns less than $10{\mu}m$ in diameter were fabricated using this technique. The real 3D micro structures such as micro spring and micro pattern were made by the presented method.

Four-beam Interference Optical System for Laser Micro- structuring Using Picosecond Laser

  • Noh, Ji-Whan;Lee, Jae-Hoon;Shin, Dong-Sig;Sohn, Hyon-Kee;Suh, Jeong;Oh, Jeong-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • A four beam interference optical system for laser micro structuring using a pulse laser was demonstrated. The four beam interference optical system using a pulse laser(picosecond laser) can fabricate micro structure on mold material(NAK80) directly. Micro structure on the polymer can be reproduced economically by injection molding of the micro structure on the mold material. The four beam interference optical system was composed by the DOE(Diffractive Optical Element) and two lenses. The laser intensity distribution of four beam interference was explained by an interference optics point of view and by the image optics point of view. We revealed that both views showed the same result. The laser power distribution of a $1{\mu}m$ peak pattern was made by the four beam interference optical system and measured by the objective lens and CCD. A $1{\mu}m$ pitch dot pattern on the mold material was fabricated and measured by SEM(Scanning Electron Microscopy).

An efficient seismic analysis technique for PCSG assembly using sub-structuring method and homogenization method

  • Gyogeun Youn;Wanjae Jang;Gyu Mahn Lee;Kwanghyun Ahn;Seongmin Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2120-2130
    • /
    • 2024
  • This study significantly reduced the seismic analysis time of PCSG assembly by introducing a reduced model using homogenization and sub-structuring methods. The homogenization method was applied to the primary and secondary micro-channel sheets, and the sub-structuring method was applied to the PCSG module sets. Modal analysis and frequency response analysis were then performed to validate the accuracy of the reduced model. The analysis results were compared with the full model and it was confirmed that the reduced model provided almost the same analysis results as the full model. To verify the computational efficiency of the reduced model, the computational time was then compared with the full model, and it was confirmed that the modal analysis time was reduced by 3.42 times and the frequency response analysis time was reduced by 4.59 times.

Leidenfrost Points Tuned via Surface Coating and Structures

  • Jeon, Deok-Jin;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.126.1-126.1
    • /
    • 2015
  • A quantitative relationship between Leidenfrost point and surface characteristics such as surface material and roughness is investigated. Based on the relationship, we have fabricated the surfaces with their Leidenfrost points (LFP) tuned by controlling surface coating and structures. As discovered by Leidenfrost, liquids placed on a hot plate levitate on the gas phase-air gap formed by the vaporization of liquids. This phenomenon is called 'Leidenfrost effect'. A change of LFP has attracted many researchers for several years but the ability to tune LFP is still a remaining issue. Many of previous work has progressed for various conditions so the systematic approach and analysis are needed to clearly correlate the LFP and the surface conditions. In this report, we investigate a relation of surface energy and LFP using various coating materials such as Octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, 2H-Perfluorooctyltrichlorosilane (FOTS). Also, we analyze how surface roughness affects LFP via surface micro structuring with ICP-RIE fabrication process. The improved understanding can have potential applications such as the control of liquid droplet behavior at elevated temperatures for efficient cooling system.

  • PDF

CO2 Laser micro-structuring of optical fiber with negative conical shape (CO2 레이저를 이용한 음각 원뿔 구조 광섬유 팁 가공 최적화 연구)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Noh, Young-Chul;Jung, Deok;Kim, Young-Sup;Lee, Ho;Kim, Chang-Hwan
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.14-19
    • /
    • 2015
  • A helical fabricating method using $CO_2$ laser was utilized for producing cone-shaped structure on a silica substrate. Output power and the number of scanning radiation were modified in order to control the structure. The experiment shows that the depth and width of cone-shape were increased with higher output power of the laser and the number of scanning. We demonstrate fabrication of multidirectional side-firing optical fiber with diameter of 440 um using the $CO_2$ laser fabrication technique.

Fabrication of PCD Micro Tool and its Hybrid Micro Machining (다결정 다이아몬드를 이용한 미세 공구 제작과 이를 이용한 미세 복합 가공)

  • Doan, Cao Xuan;Kim, Bo-Hyun;Chung, Do-Kwan;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.694-700
    • /
    • 2011
  • Since polycrystalline diamond (PCD) has high hardness like diamond, it has been used as tool material for lathe and milling of non-ferrite material. A micro tool fabricated from PCD material can be used for micro machining of hard material such as tungsten carbide, glass, and ceramics. In this paper, micro PCD tools were fabricated by micro EDM (electrical discharge machining) and used for micro grinding of glass. Craters generated on the tool surface by EDM spark work as like grits in grinding process. The effects of tool shapes, tool roughness and PCD grain size were investigated. Also studied was a hybrid process combining electrochemical discharge machining (ECDM) and micro grinding for micro-structuring of glass.

Single Exposure Imaging of Talbot Carpets and Resolution Characterization of Detectors for Micro- and Nano- Patterns

  • Kim, Hyun-su;Danylyuk, Serhiy;Brocklesby, William S.;Juschkin, Larissa
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.245-250
    • /
    • 2016
  • In this paper, we demonstrate a self-imaging technique that can visualize longitudinal interference patterns behind periodically-structured objects, which is often referred to as Talbot carpet. Talbot carpet is of great interest due to ever-decreasing scale of interference features. We demonstrate experimentally that Talbot carpets can be imaged in a single exposure configuration revealing a broad spectrum of multi-scale features. We have performed rigorous diffraction simulations for showing that Talbot carpet print can produce ever-decreasing structures down to limits set by mask feature sizes. This demonstrates that large-scale pattern masks may be used for direct printing of features with substantially smaller scales. This approach is also useful for characterization of image sensors and recording media.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.

Micromachining & Optical Properties of Li$_2$O-A1$_2$O$_3$-SiO$_2$ Glass System by Laser Treatment (레이저에 의한 Li$_2$O-A1$_2$O$_3$-SiO$_2$계 유리의 미세가공 및 광학적 특성)

  • 강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.43-45
    • /
    • 2001
  • For photosensitive and micro-structuring in $Li_2O-A1_2O_3-SiO_2$glasses by laser treatment, Nd:YAG laser in 355 nm and 1064 nm wavelength was irradiated to the glass to investigate fracture characterization and optical changes. The fractured glass surfaces irradiated by 1064 nm laser was observed by Scanning Electron Microscope(SEM) and optical microscope, and optical changes caused by 355 nm later was identified from absorption spectra. In this study, it could be expected that the laser treatment technology will be utilized for 3-dimensional micro-structure, internal waveguide, optical memory by optical absorption changes in glass matrix.

  • PDF