• 제목/요약/키워드: Micro strength

검색결과 1,201건 처리시간 0.038초

유리질 중공 미소 구체를 사용한 경량골재콘크리트의 특성에 관한 실험적 연구 (A Experimental Study on the Property of Lightweight Aggregate Concrete Using Hollow Micro Sphere)

  • 김상헌;김세환;박영신;전현규;서치호
    • 한국건축시공학회지
    • /
    • 제15권2호
    • /
    • pp.177-183
    • /
    • 2015
  • 본 연구는 구조용 단열콘크리트의 개발을 위한 기초적 연구로서 HMS를 사용한 경량골재콘크리트의 물리, 역학적 특성 및 열전도 특성을 검토한 결과, HMS의 사용으로 인해 슬럼프의 감소가 발생하여 혼화제 사용량의 증가가 필요한 것으로 나타났으며, HMS 치환율의 증가에 따라 압축강도는 HMS의 낮은 계면부착력에 기인하여 감소하는 것으로 나타났다. HMS의 치환에 따라 일반콘크리트 및 경량골재콘크리트 대비 각각 최고 32, 68%의 열전도율 값을 나타내어 열전도율이 크게 개선되는 것으로 나타났다. 또한 물시멘트비의 증가는 압축강도를 감소시켰으나 열전도율은 개선하는 것으로 나타났다.

Micro-shear bond strengths of resin-matrix ceramics subjected to different surface conditioning strategies with or without coupling agent application

  • Gunal-Abduljalil, Burcu;Onoral, Ozay;Ongun, Salim
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권3호
    • /
    • pp.180-190
    • /
    • 2021
  • Purpose. This study aimed to assess the influence of various micromechanical surface conditioning (MSC) strategies with or without coupling agent (silane) application on the micro-shear bond strength (µSBS) of resin- matrix ceramics (RMCs). Materials and Methods. GC Cerasmart (GC), Lava Ultimate (LU), Vita Enamic (VE), Voco Grandio (VG), and Brilliant Crios (BC) were cut into 1.0-mm-thick slices (n = 32 per RMC) and separated into four groups according to the MSC strategy applied: control-no conditioning (C), air-borne particle abrasion with aluminum oxide particles (APA), 2W- and 3W-Er,Cr:YSGG group coding is missing. The specimens in each group were further separated into silane-applied and silane-free subgroups. Each specimen received two resin cement microtubules (n = 8 per subgroup). A shear force was applied to the adhesive interface through a universal test machine and µSBS values were measured. Data were statistically analyzed by using 3-way ANOVA and Tukey HSD test. Failure patterns were scrutinized under stereomicroscope. Results. RMC material type, MSC strategy, and silanization influenced the µSBS values (P<.05). In comparison to the control group, µSBS values increased after all other MSC strategies (P<.05) while the differences among these strategies were insignificant (P>.05). For control and APA, there were insignificant differences between RMCs (P>.05). The silanization decreased µSBS values of RMCs except for VE. Considerable declines were observed in GC and BC (P<.05). Conclusion. MSC strategies can enhance bond strength values at the RMC - cement interface. However, the choice of MSC strategy is dependent on RMC material type and each RMC can require a dedicated way of conditioning.

Optimization of mix design of micro-concrete for shaking table test

  • Zhou, Ji;Gao, Xin;Liu, Chaofeng
    • Advances in concrete construction
    • /
    • 제13권3호
    • /
    • pp.215-221
    • /
    • 2022
  • Considering their similar mass densities, an attempt was made to optimize the mix design of micro-concrete that used barite sand as an aggregate by substituting marble powder (5%, 10%, 20%, 30%, 40%, 50%, 70%), clay brick powder (30%, 50%, 70%), and fly ash (30%, 50%, 70%) for the concrete (by mass) to form specimens for shaking table tests. The test results showed that for these three groups of materials, the substitutions had little effect on the density. The barite sand played a decisive role in the density, and the overall density of the specimens reached approximately 2.9 g/cm3. The compressive strength and elastic modulus decreased with an increase in the substitution rates for the three types of materials. Among them, the 28 day compressive strength values of the 40% and 50% marble powder groups were 11.73 MPa and 8.33 MPa, respectively, which were 58.7% and 70.7% lower than the control group, respectively. Their elastic modulus values were 1.33×104 MPa and 1.42×104 MPa, respectively, which were 39.1% and 35% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% clay brick powder groups were 13.13 MPa and 5.8 MPa, respectively, which were 53.8% and 79.6% lower than the control group, respectively. Their elastic modulus values were 1.54×104 MPa and 1.19×104 MPa, respectively, which were 29.7% and 45.4% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% fly ash groups were 13.5 MPa and 7.1 MPa, respectively, which were 52.5% and 75% lower than those of the control group, respectively. Their elastic modulus values were 1.36×104 MPa and 0.95×104 MPa, respectively, which were 37.9% and 56.6% lower than those of the control group, respectively. There was a linear relationship between the 28 day compressive strength and elastic modulus, with the correlation coefficient reaching a value higher than 0.88. The test results showed that the model materials met the high density, low compressive strength, and low elastic modulus requirements for shaking table tests, and the test data of the three groups of different alternative materials were compared and analyzed to provide references and assistance for relevant model testers.

광중합형 임시충전재의 미세누출에 관한 실험연구 (An Experimental Study on Microleakage in Light-activated Temporary Filling Materials)

  • 황수현;유지수;김선주
    • 치위생과학회지
    • /
    • 제11권4호
    • /
    • pp.333-337
    • /
    • 2011
  • 본 실험에서는 광중합형 임시충전재의 사용기간(1일 후, 3일 후, 7일 후)동안 구강 내의 수분과 온도변화 및 교합력에 의한 미세누출의 가능성을 알아보기 위하여 무게 및 압축강도를 측정하고 열 순환 횟수에 따라 충전재와 와동면 사이의 미세누출을 평가하고자 2종의 광중합형 임시충전재를 사용하여 실험한 결과는 다음과 같다. 1. 광중합형 임시충전재는 사용기간에 따라 측정한 무게는 증가되었다. 제품 간의 비교결과는 Quicks의 무게가 더 높게 나타났다. 2. Spacer의 압축강도는 사용기간에 따라 유의한 차이가 있으나 Quicks의 압축강도에서는 유의한 차이가 나타나지 않았다. 유의한 차이를 보인 Spacer에서는 3일차에서 압축강도가 크게 증가되었다. 3. 열 순환 횟수에 따른 미세누출은 7,000번 실시한 군에서 미세노출이 가장 높게 나타났고, 1,000번 실시한 군과 3,000번 실시한 군은 7,000번 실시한 군보다 통계학적으로 낮은 미세누출을 나타내었다. 4. 사용기간에 따른 무게와 압축강도 및 미세누출사이의 상호연관성이 나타났다. 본 연구에서는 사용기간 경과에 따라 미세누출의 증가를 가져왔으나 수복 후 시간이 경과함에 따라 미세누출이 증가하는 것은 자명한 사실이므로 향후 광중합형 임시충전재의 미세누출을 평가를 위해서는 습식분석을 통하여 화학적 결합을 유도하는 재료의 조성을 분석하는 방법을 부여하는 것이 미세누출 평가에 적절하다고 사료된다.

Effects of Light-Curing on the Immediate and Delayed Micro-Shear Bond Strength between Yttria-Tetragonal Zirconia Polycrystal Ceramics and Universal Adhesive

  • Lee, Yoon;Woo, Jung-Soo;Eo, Soo-Heang;Seo, Deog-Gyu
    • Journal of Korean Dental Science
    • /
    • 제8권2호
    • /
    • pp.82-88
    • /
    • 2015
  • Purpose: To evaluate the effect of light-curing on the immediate and delayed micro-shear bond strength (${\mu}SBS$) between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramics and RelyX Ultimate when using Single Bond Universal (SBU). Materials and Methods: Y-TZP ceramic specimens were ground with #600-grit SiC paper. SBU was applied and RelyX Ultimate was mixed and placed on the Y-TZP surface. The specimens were divided into three groups depending on whether light curing was done after adhesive (SBU) and resin cement application: uncured after adhesive and uncured after resin cement application (UU); uncured after adhesive, but light cured after resin cement (UC); and light cured after adhesive and light cured resin cement (CC). The three groups were further divided depending on the timing of ${\mu}SBS$ testing: immediate at 24 hours (UUI, UCI, CCI) and delayed at 4 weeks (UUD, UCD, CCD). ${\mu}SBS$ was statistically analyzed using one-way ANOVA and Student-Newman-Keuls multiple comparison test (P<0.05). The surface of the fractured Y-TZP specimens was analyzed under a scanning electron microscope (SEM). Result: At 24 hours, ${\mu}SBS$ of UUI group ($8.60{\pm}2.06MPa$) was significantly lower than UCI group ($25.71{\pm}4.48MPa$) and CCI group ($29.54{\pm}3.62MPa$) (P<0.05). There was not any significant difference between UCI and CCI group (P>0.05). At 4 weeks, ${\mu}SBS$ of UUD group ($24.43{\pm}2.88MPa$) had significantly increased over time compared to UUI group (P<0.05). The SEM results showed mixed failure in UCI and CCI group, while UUI group showed adhesive failure. Conclusion: Light-curing of universal adhesive before or after application of RelyX Ultimate resin cement significantly improved the immediate ${\mu}SBS$ of resin cement to air-abrasion treated Y-TZP surface. After 4 weeks, the delayed ${\mu}SBS$ of the non-light curing group significantly improved to the level of light-cured groups.

미세홀 형상제어를 위한 쾌속조형의 조건선정에 관한 연구 (A Study on Selecting Conditions of Rapid Prototype for Controls of Shape of Micro-hole)

  • 김태호;박재덕;이승수;서상하;전언찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.738-742
    • /
    • 2005
  • Rapid Prototype has been used to design and Production of part in a variety of fields ; Car, Electronic products, Aviation, Heavy industry etc. Moreover development of hardware gave rise to use the method of Rapid Prototype more and more at high precision and complicated shapes. Expecially, to be using process of products that shapes of Micro-hole ; Cellular phones, Antennas, Jewels, Semi conductor cases. In case of Micro-shape, precision of the shape turns on various condition ; Laser size, Laminate height, scanning speed, overcure, viscosity of resin, etc. Sometimes breaks out the case that interner hole of shape is blocked by viscosity of resin. The phenomenon has solved easily to reduce viscosity of resin. But, in case of the method brings about the problem that strength goes down in actuality products hardening. This study on verify to change of shape of Micro-hole and makes the semiconductor case which has shape of Micro-hole by using resin of higher viscosity, scanning speed and overcure

  • PDF

변형률 속도에 따른 탄소강의 재결정 거동에 미치는 미량 합금 원소의 영향 (Effect of Micro-Alloying Elements on Recrystallization Behavior of Carbon Steels at Different Strain Rates)

  • 이상인;임현석;황병철
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.535-541
    • /
    • 2016
  • The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.

단결정 실리콘 박막의 미소인장 물성 평가 (Micro-tensile Test for Micron-sized SCS Thin Film)

  • 이상주;한승우;김재현;이학주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.45-48
    • /
    • 2008
  • The mechanical behavior of small-sized materials has been investigated for many industrial applications, including MEMS and semiconductors. It is challenging to obtain accurate mechanical properties measurements for thin films due to several technical difficulties, including measurement of strain, specimen alignment, and fabrication. In this work, we used the micro-tensile testing unit with the real-time DIC (Digital Image Correlation) strain measurement system. This system has advantages of real time strain monitoring up to 50 nm resolution during the micro-tensile test, and ability to measure the young's modulus and Poisson's ratio at the same time. The mechanical properties of SCS (Single Crystal Silicon) are measured by uniaxial tension test from freestanding SCS which are $2.5{\mu}m$ thick, $200-500{\mu}m$ wide specimens on the (100) plane. Young's modulus, Poisson's ratio and tensile strength in the <110> direction are measured by micro-tensile testing system.

  • PDF

마이크로스피커 진동판의 등가탄성과 공명진동수의 연관성 (Relationship Between Geometrical Stiffness of Diaphragm and Resonance Frequency for Micro-speaker)

  • 오세진
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.640-644
    • /
    • 2010
  • Information technology devices, such as cellular phones, MP3s and so on, due to restrictions of space, require thin and small micro-speakers to generate sound. The reduction of the size of micro-speakers has resulted in the decrease of sound quality, due to such factors as frequency range and sound pressure level. In this study, the acoustical properties of oval microspeakers has been studied as a function of pattern shape on the diaphragm. The other conditions of micro-speakers, except for the pattern, was not changed. When the pattern is present on the diaphragm and the shape of pattern was a whirlwind, the resonance frequency was reduced due to the decrease of tensile strength of diaphragm. The patterns presented in the semi-minor axis of diaphragm did not effect a change of resonance frequency. However, increasing the number of patterns in the semimajor axis of diaphragm became a reason for the decrease of resonance frequency on edge side. When the depth of pattern on edge side was increased, the resonance frequency was decreased due to reduction of geometrical stiffness. If the height of edge and dome were increased, the resonance frequency and geometrical stiffness rapidly increased. After reaching the maximum values, they began to decrease with the continuous increase of height.

Fabrication of CNT Flexible Field Emitters and Their Field Emission Properties

  • Shin, Dong-Hoon;Song, Yenan;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.384-384
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been studied as an ideal material for field emitters due to the high aspect ratio, excellent electrical property and good mechanical strength. There were many reports on CNT emitters fabricated on rigid substrates, but rare reports about CNT flexible field emitters. Recently, we considered that CNTs can be a good candidate for a flexible field emitter material because of their excellent Young's modulus and elasticity, which could not be achieved with metal tips or semiconducting nanowire tips. In this work, we demonstrated the CNT flexible field emitters fabricated by a simple method and studied the field emission properties of the CNT flexible field emitters under various bending conditions. The flexible field emitters showed stable and uniform emission characteristics. Especially, there is no remarkable change of the field emission properties at the CNT flexible field emitters according to the bending conditions. The CNT flexible field emitters also exhibited a good field emission performance like the low turn-on field and high emission current. Therefore, we suggest that the CNT flexible emitters can be used in many practical applications under different bending conditions.

  • PDF