• Title/Summary/Keyword: Micro sized manufacturing

Search Result 36, Processing Time 0.025 seconds

A Study on the Micro-fracture Behavior of the MEMS Material at Elevated Temperature (고온용 MEMS 재료의 마이크로 파괴거동에 관한 연구)

  • Woo, Byung-Hoon;Bae, Chang-Won;Moon, Kyong-Man;Bae, Sung-Yeol;Higo, Yakichi;Kim, Yun-Hae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.550-555
    • /
    • 2007
  • The effective fracture toughness testing of materials intended for application in Micro Electro Mechanical Systems (MEMS) devices is required in order to improve understanding of how micro sized material used in device may be expected to perform upon the micro scale. ${\gamma}$-TiAl based materials are being considered for application in MEMS devices at elevated temperatures. Especially, in Alloy 4, both ${\alpha}_2$ and ${\gamma}$ lamellae were altered markedly in 3,000 h, $700^{\circ}C$ exposure. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. Parallel decomposition of coarse ${\alpha}_2$ into bunches of very fine (${\alpha}_2+{\gamma}$) lamellae. The materials were examined 2 types Alloy 4 on heat exposed specimen($700^{\circ}C$, 3,000 h) and no heat exposed one. Micro sized cantilever beams were prepared mechanical polishing on both side at $25{\sim}30{\mu}m$ and electro final stage polishing to observe lamellar orientation of same colony with EBSD (Electron Backscatter Diffraction Pattern). Through lamellar orientation as inter-lamellae or trans-lamellae, Cantilever beam was fabricated with Focused Ion Beam(FIB). The directional behavior of the lamellar structure was important property in single material, because of the effects of the different processing method and variations in properties according to lamellar orientation. In MEMS application, it is first necessary to have a reliable understanding of the manufacturing methods to be used to produce micro structure.

Numerical Simulation of Micro-Fluidic Flows of the Inkjet Printing Deposition Process for Microfabrication

  • Chau S.W.;Chen S.C.;Liou T.M.;Hsu K.L.;Shih K.C.;Lin Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.113-115
    • /
    • 2003
  • Droplet impinging into a cavity at micro-scale is one of important fluidic issues for microfabrications, e.g. bio-chip applications and inkjet deposition processes in the PLED panel manufacturing. The droplets generally dispensing from an inkjet head, which contains an array of nozzles, have a volume in several picoliters, while each nozzle jets the droplets into cavities with micron-meter size located on substrates. Due to measurement difficulties at micro-scale, the numerical simulation could serve as an efficient and preliminary way to evaluate the micro-sized droplet impinging behavior into a cavity. The micro-fluidic flow is computed by solving the three-dimensional Navier-Stokes equations through a finite volume discretization. The droplet front is predicted by a volume-of-fluid approach, in which the surface tension is modeled as a function of the fluid concentration. This paper discusses the influence of fluid properties, such as surface tension and fluid viscosity, on micro-fluidic characteristics at different jetting speeds in the deposition process via the proposed numerical approach.

  • PDF

A Study on the Effect of Blank Shape on the Miniature Stamping (미세스탬핑 공정에서 블랭크 형상의 영향에 관한 연구)

  • Shim Hyun-Bo
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.304-310
    • /
    • 2006
  • Due to a recent growth of the area of MEMS and a trend moving toward smaller scale, a micro manufacturing that is usually related with lithography is now emerging. Differently from traditional manufacturing processes, the micro or miniature manufacturing usually requires expensive sophisticated equipments and its characteristics are of high cost and of low productivity. However, a miniature stamping, which makes small sized product with a thin metal usually in the range of meso-scale, can be realized in a low cost and in a high productivity with relatively inexpensive equipments. For a successful development of miniature stamping, lots of obstacles, including material properties related with formability, have to be overcome. Since the thin metal shows distinctive characteristics, e.g., size effect and statistically scattered material properties, the formability of miniature stamping is not good in general and the possible shape with the miniature stamping is limited relatively simple shapes. Since the optimal blank improves formability and the improved formability can make up for problems of material properties, the possibility of success can be increased. This study is carried out to show the possibility of miniature stamping and to verify the effect of optimal blank for the miniature stamping.

A Study on Thermal Stress Analysis of Plastic-Core Solder Balls (플라스틱 핵 솔더볼의 열응력 해석에 관한 연구)

  • Kim, H.D.;Yoon, D.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.159-162
    • /
    • 2007
  • Recently, Pb-free solder ball technology, which is getting more significant in miniaturization of electronic equipment, and resolution of recent environmental problems, is necessary to be developed. A plastic-core solder ball is much promising in those considerations. Plastic-core solder balls have the tendency to replace the usual metal-core solder ball from low material cost and superior mechanical properties. The thermal effects, however, are important in manufacturing process, such as deposing micro-sized metal thin film on the spherical polymer surface. Furthermore plastic-core solder balls are easy to be broken due to CTE and elastic coefficient of material property from heat transfer. We propose technical computational investigations for the manufacturing design and the reliability of plastic-core solder ball from thermal stress analysis.

Development and Evaluation of Ultra-precision Desktop NC Turning Machine (초정밀 데스크탑 마이크로 NC 선반 개발 및 성능평가)

  • Ro, Seung-Kook;Park, Jong-Kweon;Park, Hyun-Duk;Kim, Yang-Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.747-754
    • /
    • 2013
  • This study introduces a recently designed desktop-sized NC turning system and its components. This machine is designed for the ultra-precise turning of parts with a diameter of 0.5-20 mm with minimum space usage for the machine. This study aims to achieve submicron-level accuracy of movements and good rigidity of the machine for precision machining using the desktop-sized machine. The components such as the main machine structure, air bearing servo spindle, and XZ stage with needle roller guides are designed, and the designed machine is built with a PC-based CNC controller. Its static and dynamic stiffness performances and positioning resolutions are tested. Through machining tests with single-crystal diamond tools, a form error less than $0.8{\mu}m$ and surface roughness (Ra) of $0.03{\mu}m$ for workpieces are obtained.

A Design and Manufacturing of Two Types of Micro-grippers using Piezoelectric Actuators for the Micromanipulation (미세 조작을 위한 압전 구동 집게의 설계 및 제작)

  • 박종규;문원규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.246-250
    • /
    • 2003
  • In this study, two new types of micro-grippers in which micro-fingers are actuated by piezoelectric multi-layer benders and stacks are introduced for the manipulation of micrometer-sized objects. First, we constructed a 3-chopstick-mechanism tungsten gripper, which is composed of three chopsticks: two are designed to grip micro-objects, and tile third is used to help grasp and release the objects through overcoming especially electrostatic force among some surface effects including electrostatic, van der Waals forces and surface tension. Second, a 2-chopstick-mechanism silicon micro-gripper that uses an integrated force sensor to control the gripping force was developed. The micro-gripper is composed of a piezoelectric multilayer bender for actuating the gripper fingers, silicon fingertips fabricated by use of silicon-based micromachining, and supplementary supports. The micro-gripper is referred to as a hybrid-type micro-gripper because it is composed of two main components; micro-fingertips fabricated using micromachining technology to integrate a very sensitive force sensor for measuring the gripping force, and piezoelectric gripper finger actuators that are capable of large gripping forces and moving strokes. The gripping force signal was found to have a sensitivity of 667 N/V. To the design of each of components of both of the grippers. a systematic design approach was applied, which made it possible to establish the functional requirements and design parameters of the micro-grippers. The micro-grippers were installed on a manual manipulator to assess its performance in tasks such as moving micro-objects from one position to a desired position. The experiment showed that the micro-grippers function effectively.

  • PDF

Experimental Study on Thermal Insulation and Cooling for Rotor/Bearing Area in 500W Class Micro Gas Turbine Generator (500W급 마이크로 가스터빈 발전기 회전체-베어링부의 단열 및 냉각 성능에 대한 실험적 연구)

  • Park, Cheol Hoon;Choi, Sang Kyu;Ham, Sang Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.19-24
    • /
    • 2014
  • Development of long-term mobile energy sources for mobile robots or small-sized unmanned vehicles are actively increasing. The micro gas turbine generator (MTG) is a good candidate for this purpose because it has both of high energy density and high power density, and 500W class MTG is under development. The designed MTG can be divided into 2 main parts. One part consists of motor/ generator and compressor, and the other one consists of combustor, recuperator and turbine. 500W class MTG is designed to operate at ultra-high speed of 400,000 rpm in high turbine temperature over $700^{\circ}C$ to improve the efficiency. Because the magnetism of NdFeB permanent magnet for the motor/generator could be degraded if the temperature is over $150-200^{\circ}C$, MTG needs the thermal insulation to block the heat transfer from combustor/turbine side to motor/generator side. Moreover, the motor/generator is allocated to get the cooling effect from the rapid air flow by the compressor. This study presents the experimental results to verify whether the thermal insulator and air flow are effective enough to keep the motor/generator part in the low temperature less than $100^{\circ}C$. From the motoring test by using the high temperature test rig, it was confirmed that the motor/generator part could maintain the temperature less than $50^{\circ}C$ under the condition of 1.0 bar compressed air.

Analysis and Design of 3-DOF Parallel Mechanism Based on Kinematic Couplings (기구학적 커플링으로 구성된 3자유도 병렬 메커니즘 해석 및 설계)

  • Wang, Wei-Jun;Han, Chang-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.479-486
    • /
    • 2012
  • This paper presents a high-speed automatic micro-alignment system that is a part of an inspection machine for small-sized molded lenses of mobile phones, palm-top computers, and so on. This work was motivated by the shortcomings of existing highest-grade commercial machine. A simple tip/tilt/Z parallel mechanism is designed based on kinematic couplings, which is a 3-degree-of-freedom (3-DOF) moderate-cost alignment stage. It is used to automatically adjust the posture of each lens on the tray, which is impossible by the conventional instrument. Amplified piezoelectric actuators are used to ensure the accuracy and dynamic response. Forward kinematic analysis and simulation show that the parasitic motion is small enough compared to the actuator stroke. From the workspace analysis of the moving platform, it is clear that the output motion range satisfies the design requirements.

Nanohole Fabrication using FIB, EB and AFM for Biomedical Applications

  • Zhou, Jack;Yang, Guoliang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.18-22
    • /
    • 2006
  • Although many efforts have been made in making nanometer-sized holes, there is still a major challenge in fabricating individual single-digit nanometer holes in a more controllable way for different materials, size distribution and hole shapes. In this paper we describe our efforts to use a top down approach in nanofabrication method to make single-digit nanoholes. There are three major steps towards the fabrication of a single-digit nanohole. 1) Preparing the freestanding thin film by epitaxial deposition and electrochemical etching. 2) Making sub-micro holes ($0.2{\mu}\;to\;0.02{\mu}$) by focused ion beam (FIB), electron beam (EB), atomic force microscope (AFM), and others methods. 3) Reducing the hole size to less than 10 nm by epitaxial deposition, FIB or EB induced deposition and micro coating. Preliminary work has been done on thin films (30 nm in thickness) preparation, sub-micron hole fabrication, and E-beam induced deposition. The results are very promising.

Pattern Shape Modulation by Scanning Methods in E-Beam Lithography (전자빔 리소그래피를 이용한 주사기법에 따른 패턴형상 조정)

  • Oh, Se-Kyu;Kim, Seoung-Jae;Kim, Dong-Hwan;Park, Keun;Jang, Dong-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.558-564
    • /
    • 2009
  • To aim at obtaining a correct and fine small pattern by an electron beam lithography several conditions and methods affecting a real pattern shape needs to be investigated. A micro/nano sized pattern shape is sometimes dependent on the scanning method. In this work, four types of scanning methods are implemented and their characteristics are investigated. For a $11\times11um$ pattern, a Zigzag scanning method proves a precise pattern generation. The other ways such as SEM scanning and swirl in-out scanning method result in some distorted pattern shape. It is proved that abrupt change in the pattern generation limits to obtaining a fine and small pattern.

  • PDF