• Title/Summary/Keyword: Micro polishing

Search Result 182, Processing Time 0.023 seconds

마이크로 블라스터를 이용한 태양전지용 재생웨이퍼에 관한 연구

  • Lee, Yun-Ho;Gong, Dae-Yeong;Jeong, Sang-Hun;Kim, Sang-Won;Kim, Dong-Hyeon;Seo, Chang-Taek;Jo, Chan-Seop;Lee, Jong-Hyeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.276-276
    • /
    • 2009
  • Solar cells has been studied mainly the high efficiency and lower prices. Using recycling wafer as a way to realize their money in it, there is a way to manufacture a solar cell substrate. How to play the recycling wafer, CMP(Chemical Mechanical Polishing) and remelting process is the complex and the expensive equipment. However, using the Micro-Blaster, the process easier, and cheaper prices. Micro-Blaster confirmed that the remaining amount of material left after the process recycling wafer surface.

  • PDF

Development of micromolding technology using silicone rubber mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • 정성일;임용관;박선준;최재영;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.46-49
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into tile other industry such as sensors, micro fluidics and displays. The MST, however. has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting. can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated. and then it applied to the fabrications of polishing pad and PDP barrier ribs.

  • PDF

Fabrication of Microshafts using Electrochemical Process (전해 프로세스를 이용한 미세축 제작)

  • Lim, Young-Mo;Lim, Hyung-Jun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.169-174
    • /
    • 2001
  • We proposed a new fabrication method using electrochemical process for microshafts. This method is a kind of atomic removal process by chemical reaction. Therefore, it is possible to make thin and long shafts regardless of the stiffness of materials. Because shaping process is simply switched to polishing process by varying process conditions, we can precisely fabricate microshafts with very smooth surface. We also fabricated a very thin shaft with the diameter as small as 10$\mu$m and a microshaft with high aspect ratio.

  • PDF

Development of Micromolding Technology using Silicone Rubber Mold (실리콘 고무형을 이용한 미세복제기술 개발)

  • Chung, Sung-Il;Im, Yong-Gwan;Kim, Ho-Youn;Choi, Jae-Young;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1380-1387
    • /
    • 2003
  • Microsystem technology (MST) which originated from semiconductor processes has been widely spreaded into the other industry such as sensors, micro fluidics and displays. The MST, however, has been troubled in spreading with its high cost and material limitations. So, in this paper, new process for micromolding technology using silicone rubber mold was introduced. Silicone rubber mold, which was fabricated by vacuum casting, can be transferred a master pattern to a final product with the same shape but different materials. In order to verify the possibility of application of silicone rubber mold to the MST, its transferability was evaluated, and then it applied to the fabrications of polishing pad and PDP barrier ribs.

Evaluation on Tungsten CMP Characteristic using Fixed Abrasive Pad with Alumina (알루미나 고정입자패드를 이용한 텅스텐 CMP 특성 평가)

  • 박범영;김호윤;김형재;서헌덕;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.206-209
    • /
    • 2002
  • The fixed abrasive pad(FAP) has been introduced in chemical mechanical polishing(CMP) field recently. In comparison with the general CMP which uses the slurry including abrasives, FAP takes advantage of planarity. resulting from decreasing pattern selectivity and defects such as dishing due to the reduction of abrasive concentration especially. This paper introduces the manufacturing technique of $Al_2$O$_3$-FAP using hydrophilic polymers with swelling characteristic in water and explains the self.texturing phenomenon. It also focuses on the chemical effects on tungsten film and the FAP is evaluated on the removal rate as a function of chemicals such as oxidizer, catalyst, and acid. The removal rate is achieved up to 1000A1min as about 70 percents of the general one. In the future. the research has a plan of the advanced FAP and chemicals in tungsten CMP considering micro-scratch, life-time, and within wafer non-uniformity.

  • PDF

A Study on the chemical-mechanical polishing process of Sapphire Wafers for GaN thin film growth. (사파이어웨이퍼의 기계-화학적인 연마 가공특성에 관한 연구)

  • Nam, Jung-Hwan;Hwang, Sung-Won;Shin, Gwi-Su;Kim, Keun-Joo;Suh, Nam-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.31-34
    • /
    • 2003
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by chemical and mechanical polishing(CMP) process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of sapphire crystalline wafer at surfaces has a full width at half maximum 89 arcses. The surfaces of sapphire wafers were mechanically affected by residual stress and surface default. Sapphire wafers's waveness has higher abrasion rate in the edge of the wafer than its center due to Newton's Ring interference.

  • PDF

Tungsten CMP in Fixed Abrasive Pad using Hydrophilic Polymer (친수성 고분자를 이용한 고정입자패드의 텅스텐 CMP)

  • 박범영;김호윤;김형재;김구연;정해도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.22-29
    • /
    • 2004
  • As a result of high integration of semiconductor device, the global planarization of multi-layer structures is necessary. So the chemical mechanical polishing(CMP) is widely applied to manufacturing the dielectric layer and metal line in the semiconductor device. CMP process is under influence of polisher, pad, slurry, and process itself, etc. In comparison with the general CMP which uses the slurry including abrasives, fixed abrasive pad takes advantage of planarity, resulting from decreasing pattern selectivity and defects such as dishing & erosion due to the reduction of abrasive concentration especially. This paper introduces the manufacturing technique of fixed abrasive pad using hydrophilic polymers with swelling characteristic in water and explains the self-conditioning phenomenon. And the tungsten CMP using fixed abrasive pad achieved the good conclusion in terms of the removal rate, non-uniformity, surface roughness, material selectivity, micro-scratch free contemporary with the pad life-time.

Surface Polishing of Polymer Microlens with Solvent Vapor (솔벤트 증기를 이용한 폴리머 마이크로 렌즈의 표면 연마)

  • Kim, Sin Hyeong;Song, Jun Yeob;Lee, Pyeong An;Kim, Bo Hyun;Oh, Young Tak;Cho, Young Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.644-649
    • /
    • 2013
  • Today, there are lots of progresses in the field of lens researches, especially in the microlens fabrication. Unlike normal lenses, microlens has been widely used as a role of improving the performance of photonic devices which increase the optical precision, and also used in the fields of the display. In this paper, polymer microlenses with $300{\mu}m$ diameter were replicated through hot-embossing from nickel mold which was fabricated by micro-EDM. After hot-embossing process, the polymer microlenses have a rough surface due to the crater formed by micro-EDM process, which is projected onto the surface of the lenses. The surface of polymer microlenses was polished using solvent vapor to improve the surface roughness of the microlenses without changing their shape. In the experiment, the surface roughness was improved with the processing time and vapor temperature. Also, the roughness improvement was greatly affected by the solubility difference between polymer and solvent.

Micro-CT Evaluation of Stainless Steel Crowns on Extracted Primary Molars (Micro-CT를 이용한 발거된 유구치의 기성금속관 평가)

  • Jung, Boram;Shin, Jonghyun;Jeong, Taesung;Kim, Jiyeon;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • This study was conducted for the purpose of evaluating the stainless steel crowns on extracted primary molars and thus identifying frequent errors and defects. Visual assessment and micro-computed tomography (micro-CT) image analysis were performed on 97 primary molars for evaluation of the state of marginal adaptation, cement loss, secondary caries, ledge formation, attritive perforation and marginal polishing defect. The results were as follows: In the examination of object teeth by evaluation criteria, cement loss was found most frequently (98%), followed by secondary caries (42.3%), marginal polishing defect (41.2%), ledge formation (29.9%) and attritive perforation (17.5%), in this order. The cement loss at the margins showed a significant relationship with marginal gap and secondary caries: the larger the marginal gap is, the more frequent is the cement loss (p < 0.05). The average marginal gap was $0.31{\pm}0.26mm$ and showed the highest value in the maxillary 2nd primary molars. The location of the crown margin above the cementoenamel junction was found most frequently and it was found that the higher the crown margin is located, the less the marginal gap becomes (p < 0.05). In conclusion, it is thought very desirable to pay closer attention to crown margins and shapes for stainless steel crown restoration in order to minimize the marginal gaps and consequent cement loss.

Development of 121 pins/mm2 High Density Probe Card using Micro-spring Architecture (마이크로 스프링 구조를 갖는 121 pins/mm2 고밀도 프로브 카드 제작기술)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.749-755
    • /
    • 2007
  • Recently, novel MEMS probe cards can support reliable wafer level chip test with high density probing capacity. However, manufacturing cost and process complexity are crucial weak points for low cost mass production. To overcome these limitations, we have developed micro spring structured MEMS probe card. For fabrication of micro spring module, a wire bonder and electrolytic polished gold wires are used. In this case, stringent tension force control is essential to guarantee the low level contact resistance of micro spring for reliable probing performance. For this, relation between tension force of fabricated probe card and contact resistance is characterized. Compare to conventional probe cards, developed MEMS probe card requires fewer fabrication steps and it can be manufactured with lower cost than other MEMS probe cards. Also, due to the small contact scratch patterns, we expect that it can be applied to bumping types chip test which require higher probing density.