• 제목/요약/키워드: Micro part

검색결과 682건 처리시간 0.026초

도시 열섬 완화를 위한 가로형 집합주택 계획모델 연구 (A Design Model Development for Street-Oriented Block Housing Reducing Urban Heat Island Effects)

  • 김호정
    • 대한건축학회논문집:계획계
    • /
    • 제35권6호
    • /
    • pp.27-37
    • /
    • 2019
  • This study focused on the possibility of reducing the cooling load through the change of micro climate in the outdoor space during summer season. This study proposes an efficient planning model by comparing the effects of urban heat island mitigation through wind path planning, outdoor space vegetation, and exterior material change by using the basic model of the street-oriented block housing proposed in the previous research by the same author. As a result, the most effective wind path planning strategy in the street-oriented block housing was the change of the air flow through the mass height adjustment. When the tall building masses were staggered and arranged in a balanced manner, the overall wind environment could be improved. The greater the height difference between low and high masses, the better the air flow was shown. It was also important to arrange the building masses so that the inlet of the main wind was open and to allow the external space to connect to the adjacent block to create a continuous flow. The change of outdoor space vegetation and flooring, and the formation of wind paths through the opening of lower part also showed the effect of heat island reduction. In addition, the change of PMV in summer was the biggest influence of shadow by tall building mass. Attention should be paid to the fact that high-albedo exterior materials are adversely affected by multiple reflections in dense street-oriented block housing. The use of albedo of the exterior material showed that it is necessary to pay attention to apply in the high density block housing. This is attributed to the rise of the temperature due to the absorption of energy into the low-albedo flooring, where the high-albedo exterior causes multiple reflections.

DSI 성형을 이용한 금속/플라스틱 복합 부품 제조에 관한 연구 (A study on the manufacturing of metal/plastic multi-components using the DSI molding)

  • 하석재;차백순;고영배
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.71-77
    • /
    • 2020
  • Various manufacturing technologies, including over-molding and insert-injection molding, are used to produce hybrid plastics and metals. However, there are disadvantages to these technologies, as they require several steps in manufacturing and are limited to what can be reasonably achieved within the complexities of part geometry. This study aims to determine a practical approach for producing metal/plastic hybrid components by combining plastic injection molding and metal die casting to create a new hybrid metal/plastic molding process. The integrated metal/plastic hybrid injection molding process developed in this study uses the proven method of multi-component technology as a basis to combine plastic injection molding with metal die casting into one integrated process. In this study, the electrical conductivity and ampacity were verified to qualify the new process for the production of parts used in electronic devices. The electrical conductivity was measured, contacting both sides of the test sample with constant pressure, and the resistivity was measured using a micro ohmmeter. Also, the specific conductivity was subsequently calculated from the resistivity and contact surface of the conductor path. The ampacity defines the maximum amount of current a conductive path can carry before sustaining immediate or progressive deterioration. The manufactured hybrid multi-components were loaded with increasing currents, while the temperature was recorded with an infrared camera. To compare the measured infrared images, an electro-thermal simulation was conducted using commercial CAE software to predict the maximum temperature of the power loaded parts. Overall, during the injection molding process, it was demonstrated that multifunctional parts can be produced for electric and electronic applications.

Study on shear fracture behavior of soft filling in concrete specimens: Experimental tests and numerical simulation

  • Lei, Zhou;Vahab, Sarfarazi;Hadi, Haeri;Amir Aslan, Naderi;Mohammad Fatehi, Marji;Fei, Wu
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.337-351
    • /
    • 2023
  • In this paper, the shear behavior of soft filling in rectangular-hollow concrete specimens was simulated using the 2D particle flow code (PFC2D). The laboratory-measured properties were used to calibrate some PFC2D micro-properties for modeling the behavior of geo-materials. The dimensions of prepared and modeled samples were 100 mm×100 mm. Some disc type narrow bands were removed from the central part of the model and different lengths of bridge areas (i.e., the distance between internal tips of two joints) with lengths of 30 mm, 50 mm, and 70 mm were produced. Then, the middle of the rectangular hollow was filled with cement material. Three filling sizes with dimensions of 5 mm×5 mm, 10 mm×5 mm, and 15 mm×5 mm were provided for different modeled samples. The parallel bond model was used to calibrate and re-produce these modeled specimens. Therefore, totally, 9 different types of samples were designed for the shear tests in PFC2D. The shear load was gradually applied to the model under a constant loading condition of 3 MPa (σc/3). The loading was continued till shear failure occur in the modeled concrete specimens. It has been shown that both tensile and shear cracks may occur in the fillings. The shear cracks mainly initiated from the crack (joint) tips and coalesced with another one. The shear displacements and shear strengths were both increased as the filling dimensions increased (for the case of a bridge area with a particular fixed length).

미세버블 발생용 보텍스 노즐의 유체유동에 대한 연구 (A Study on the Fluid Flow of Vortex Nozzle for Generating Micro-bubble)

  • 유성훈;박상희;강우진;한승욱
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.637-644
    • /
    • 2022
  • In this study, the flow characteristics according to the shape of the vortex nozzle was studied by numerical analysis and the amount of microbubble generation was measured experimentally. The shape of the vortex nozzle is cylindrical, diffuser, and conical type. The axial fluid velocity in the induced tube gradually increased from the inlet to the outlet. In particular, the fluid velocity in the nozzle part increased rapidly. The velocity distribution of the fluid at the inlet of the induced tube showed that the flow rotates counterclockwise in the outer region and the inner center of the induced tube. At the outlet of the induced tube, the cylindrical and conical type showed rotational flow, and the diffuser type showed irregular turbulent flow. The dimensionless pressure ratio 𝜂 of the inner region of the induced tube was lower than that of the outer region. Also, 𝜂 near the outlet of the induced tube in cylindrical and conical type showed a similar tendency to the inlet area. At the outer region of inlet of induced tube, intense vorticity was observed on the wall and in lower region. At the inner region of inlet of induced tube, intense vorticity was observed on the inner wall of the induced tube and in the central region of the inlet of the induced tube. At the outlet of induced tube, in the case of the cylindrical and conical type, intense vorticity was observed near the inner wall, the diffuser type showed irregular strong vorticity inside the tube. The total number of bubbles measured was the most in the cylindrical type, and the microbubbles less than 50mm occurred the most in the conical type.

융합 차폐시트를 이용한 선량 맞춤형 에이프런 마이크로 기능성 디자인 (Dose Customized Apron Micro Functional Design Using Convergence Shielding Sheet)

  • 김선칠
    • 한국융합학회논문지
    • /
    • 제12권11호
    • /
    • pp.119-126
    • /
    • 2021
  • 본 의료기관에서 사용되는 방사선 차폐복은 납당량 0.25 mmPb를 기준으로 제시하고 있다. 그러나 신체 각 부위별 감수성을 고려하고 사용자의 활동성을 보장할 수 있는 동시에 정밀한 방어가 가능한 차폐복 제작에 대해 연구하고자 한다. 친환경 차폐 재료를 기반으로 제작하여 기존 납 Apron의 중량 문제와 환경 문제를 해결하는 동시에 두께로 납당량과 동일한 차폐성능을 제시하고자 하였다. 제작된 차폐시트의 원단은 납당량 0.12 mmPb부터 0.32 mmPb까지 차폐시트의 두께로 조절하는 카렌더 공정을 통해 제작하였다. 각 신체 부위별 감수성을 고려한 차폐복을 제작하여 의료기관에서 상시 착용하고 있는 대상자를 통해 사용성평가를 실시하였다. 차폐복을 착용한 후 활동성이 좀 더 증가하였다는 의견이 많았으며, 무게는 0.26kg을 줄였다. 향후에는 의료기관의 종사자의 활동성을 고려한 차폐복 디자인 개선 노력이 필요할 것으로 사료된다.

열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석 (Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation)

  • 변상원;김영신;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

뎁스카메라와 YOLOAddSeg 알고리즘을 이용한 방사선치료환자 미세동작인식 및 실시간 위치보정기술 개발 (Development of Motion Recognition and Real-time Positioning Technology for Radiotherapy Patients Using Depth Camera and YOLOAddSeg Algorithm)

  • 박기용;류규하
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.125-138
    • /
    • 2023
  • The development of AI systems for radiation therapy is important to improve the accuracy, effectiveness, and safety of cancer treatment. The current system has the disadvantage of monitoring patients using CCTV, which can cause errors and mistakes in the treatment process, which can lead to misalignment of radiation. Developed the PMRP system, an AI automation system that uses depth cameras to measure patient's fine movements, segment patient's body into parts, align Z values of depth cameras with Z values, and transmit measured feedback to positioning devices in real time, monitoring errors and treatments. The need for such a system began because the CCTV visual monitoring system could not detect fine movements, Z-direction movements, and body part movements, hindering improvement of radiation therapy performance and increasing the risk of side effects in normal tissues. This study could provide the development of a field of radiotherapy that lags in many parts of the world, along with the economic and social importance of developing an independent platform for radiotherapy devices. This study verified its effectiveness and efficiency with data through phantom experiments, and future studies aim to help improve treatment performance by improving the posture correction mechanism and correcting left and right up and down movements in real time.

Photoprotection by Topical DNA Repair Enzymes

  • Yarosh, Daniel B.
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.186-189
    • /
    • 2002
  • Many of the adverse effects of solar UV exposure appear to be directly attributable to damage to epidermal DNA. In particular, cyclobutane pyrimidine dimers (CPD) may initiate mutagenic changes as well as induce signal transduction responses that lead to a loss of skin immune surveillance and micro-destruction of skin structure. Our approach is to reverse the DNA damage using prokaryotic DNA repair enzymes delivered into skin using specially engineered liposomes. T4 endonuclease V encapsulated in liposomes (T4N5 liposome lotion) enhanced DNA repair by shifting repair of CPD from the nucleotide excision to the base excision repair pathway. Following topical application to humans, increased repair limited UV-induction of cytokines, many of which are immunosuppressive. In a recent clinical study, topical treatment of UV-irradiated human skin with T4N5 liposome lotion reduced the suppression of the nickel sulfate contact hypersensitivity response. Similarly, the photoreactivating enzyme enhances repair by directly reversing CPDs after absorbing activating light. Here also treatment of UV-irradiated human skin with photoreactivating enzyme in liposomes and photoreactivating light restored the response to the contact allergen nickel sulfate. These findings confirm in humans the observation in mice that UV induced suppression of contact hypersensitivity is caused in part by CPDs. We have tested the ability of T4N5 liposome lotion to prevent UV-induced skin cancer in patients with xeroderma pigmentosum (XP), who have an elevated incidence of skin cancer resulting from a genetic defect in DNA repair. Daily use of the lotion for one year in a group of 20 XP patients reduced the average number of actinic keratoses by 68% and basal cell cancers by 30% compared to 9 patients in the placebo control group. Delivery of DNA repair enzymes to skin is a promising new approach to photoprotection.

  • PDF

정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구 (A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method)

  • 이지희;김성환;정해영
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.79-87
    • /
    • 2024
  • This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.

Optimisation of Infrastructure within the Melbourne Urban plan

  • Koorosh Gharehbaghi;Vincent Raso
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.299-303
    • /
    • 2011
  • Congestion is a growing concern of many global cities and the demands on Infrastructure services within a locale coupled by the rising expectations from the growing population places stress on these cities. This entails the ability to build a sustainable community that requires an understanding and recognition of Population growth, changing demographics and the ever changing urban development on both a macro and micro level. Infrastructure is an integral part of Australian economy, particularly the 'Infrastructure Assets Management' which highlights the importance towards the development of sustainable communities for Melbourne's future. Melbourne 2030 is a comprehensive representation of government's response to a wide-ranging population growth within Melbourne metropolitan and surrounding areas. Urban plan and specific Infrastructure Assets Planning needs not only to provide sufficient Infrastructure to a community, but it must also be efficient and innovative so that it produces an optimised management system. A system that incorporates engineering techniques that will be sustainable for decades to come by maintaining an acceptable level of services to its intended community in an effective manner, which also strengthens service delivery. The fundamental challenges for optimization of Infrastructure with the Melbourne urban plan is, the ability to manage and sustain maintenance of Infrastructure to provide the acceptable level of service required by the community in a most effective manner which also strengthens service delivery to contribute towards Melbourne 2030. This paper particularly investigates some of the fundamental issues within the Melbourne urban plan such as Infrastructure Asset Management, AusLink and the Australian Road Management Act 2004, which the Governments at all levels must deal with to provide an economically viable solution to the changing Infrastructure so it may suits the needs and services the strategies of a metropolis.

  • PDF