• 제목/요약/키워드: Micro nozzle

검색결과 209건 처리시간 0.023초

미세 수관 노즐의 전기유체역학적 수적 분사특성 (Electrohydrodynamic Water Droplet Ejection Characteristics from a Micro-Water-Nozzle)

  • 문재덕
    • 전기학회논문지
    • /
    • 제59권9호
    • /
    • pp.1632-1637
    • /
    • 2010
  • A micro-water-nozzle, as one of a cooling means of micro-electronic devices, has been proposed and investigated. The I-V characteristics of the micro-water-nozzle and effect of applied voltage on the meniscus formation and deformation and ejection processes of de-ionized water on the micro-water-nozzle tip have been investigated. The water ejection processes, such as a drop formation, a drop deformation, a dripping, a cone jet, and an atomization, were taken place on the micro-water-nozzle tip by the electrohydrodynamic forces acted by the DC and AC high voltages applied on the meniscus of the micro-water-nozzle tip. The I-V characteristics of the micro-water-nozzle-to-plate electrode system were different from that of the same metal-point electrode system, due to the meniscus formation and water droplet ejection at the nozzle tip. The positive and negative DC and AC high voltages showed the water droplets ejection, the ejection rates of 1.8, 1.5 and 1.2 g/h respectively, which, however, showed that the proposed micro-water-nozzle-to-plate electrode system could be used as one of an effective pumping means.

집속이온빔을 이용한 마이크로 노즐의 제작 (Machining of The Micro Nozzle Using Focused Ion Beam)

  • 김규환;민병권;이상조;박철우;이종항
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성연구 (Characteristic Study of Micro-Nozzle according to the Ratio of Nozzle Expansion and Specific heats)

  • 오화영;허환일;문성환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.381-385
    • /
    • 2005
  • 최근 우주 개발 기술은 "더 빠르고, 저렴하고, 효율적인"으로 표현할 수 있다. 이런 장치들 사이에서 마이크로 추진 장치는 필수적인 요소이다. 또한 마이크로 노즐은 마이크로 추진 장치에서 가장 중요한 부분이다. 냉가스 추력기의 경우, 마이크로 노즐은 팽창비의 변화를 통해 압축 가스내의 저장된 에너지를 운동에너지로 변환시킨다. 본 논문에서는 노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성을 실험하였다. 추력은 추력 측정 장치에 부착한 스트레인게이지를 사용하여 측정하였다. 또한 실험을 통해 마이크로 노즐의 성능을 평가해보았다.

  • PDF

공기의 자가흡입에 의해 마이크로버블을 발생시키는 보텍스 노즐에 대한 실험적 연구 (An experimental study on the Vortex nozzle for generating micro-bubble by air self-suction)

  • 곽구태;박상희;김창수;유상열
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.98-104
    • /
    • 2015
  • This experiment was a study of a Vortex nozzle designed to produce micro-bubbles due To investigate air self-suction and the generation of micro-bubble by the Vortex nozzle, the dimensions of air intake region, the nozzle shape, and the nozzle exit diameter ($d_n=5,7,9.2,12.3mm$)werevaried. The air self-suction rate was ~1,000 to 2,000 cc/min at the orifice nozzle (7 mm), and ~100 and ~22 cc/min at the sector nozzles (9.2 and 12.3 mm, respectively). The most bubbles were detected in the orifice nozzle, but bubbles less than $50{\mu}m$ were found in the 12.3-mm sector nozzle. The dissolved oxygen in the tank water was much greater in Case 2 than in Case 1, at both the orifice and sector nozzles. Moreover, the reduction rate of dissolved oxygen was found to be less at the sector nozzles, than at the orifice nozzle.

저진공상태에서 노즐 팽창비와 비열비에 따른 마이크로 노즐의 특성 연구 (Characteristic Study of Micro-Nozzles according to the Ratios of Nozzle Expansion and Specific heats in low vacuum condition)

  • 김연호;정성철;허환일
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.249-252
    • /
    • 2006
  • We conducted the experiment to analyze characteristics of micro-nozzle using different cold gas under two different nozzle expansion ratios in low vacuum condition. We measured thrust and chamber pressure and mass flow rate under low vacuum condition, and then compared them with those in ambient pressure.

  • PDF

레이저 미세 가공기술을 이용한 마이크로 엑츄에이터의 개발 (Laser Microfabrication of Micro Actuator)

  • 김광열;고상철;박현기
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.932-937
    • /
    • 2002
  • The polyimide nozzle and silicon restrictor inside a thermal micro actuator have been fabricated using state of the art laser micromachining methods. Numerical models of fluid dynamics inside the actuator chamber and nozzle are presented. The models include fluid flow from reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of refill through restrictor. Since high tapered nozzle and restrictor are very important parameters for overall actuator performance design, a special setup for the beam delivery system has been developed. The effects of variations of nozzle thickness, diameter, taper angles, and restrictor shapes are simulated and some results are compared with the experimental results. It is fecund that the fluid ejection through the thinner and high tapered nozzle is more steady, fast, and robust and the tapered restrictor shows more satisfying refill than the zero taper one.

  • PDF

재순환 유동 공기 자가흡입에 의한 마이크로버블 발생 오리피스 노즐 시스템에 대한 실험적 연구 (An Experimental Study on the Orifice Nozzle System that Generates Micro-bubbles by Self-suction of Air with a Recirculating Flow)

  • 오신일;박상희
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.82-88
    • /
    • 2018
  • An experimental study was performed on the orifice nozzle system that generates micro-bubbles by air self-suction using a venturi nozzle. This study experimentally investigates the amount of air sucked into the venturi nozzle and the number of micro-bubbles generated by the orifice nozzle system in Cases 1 and 2. The experimental conditions were varied by changing the diameter of the orifice nozzle (d=2~7 mm) and the number of holes of the perforated plate nozzle (n = 2-12). In Case 1, the air self-suction was more than 2 LPM at $d{\leq}4mm$. When d = 4 mm, the total number of bubbles was 29,777, and it was confirmed that micro-bubbles occupied approximately 65% of the total number of bubbles. In Case 2, the air self-suction was maintained constant at approximately 2.5 LPM regardless of the number (n) of holes. The total amount of bubbles increased when n increased but remained constant at approximately 44,000 when $n{\geq}7EA$. It was also confirmed that more than 80% of all bubbles were micro-bubbles when $n{\geq}10EA$. Thus, the number of micro-bubbles increased by approximately 15% compared to the experimental result of Case 1, which was optimized with d = 4 mm.

Powder Blasting 에 의한 유리의 미세 홈 가공시 노즐 주사횟수의 영향 (Effect of Nozzle Scanning in Micro Grooving of Glass by Powder Blasting)

  • 김광현;최종순;박동삼
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1280-1287
    • /
    • 2002
  • The old technique of sandblasting which has been used for decoration of glass surface has recently been developed into a powder blasting technique for brittle materials such as glass, silicon and ceramics, capable of producing micro structures larger than $100{\mu}$ m. This paper describes the performance of powder blasting technique in micro-line grooving of glass and the effect of the number of nozzle scanning on the depth and width of line groove. Experimental results showed that increasing the no. of nozzle scanning resulted in the increase of depth and width in grooves. Increase of width which may cause several problems in the precision machining results from wear of mask film. Therefore, well-controlled masking process is the most important factor for micro machining of glass with accuracy.

마이크로 임계노즐 유동의 CFD 예측 (A CFD Prediction of a Micro Critical Nozzle Flow)

  • 김재형;우선훈;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.652-657
    • /
    • 2001
  • Computational work using the axisymmetric, compressible, Navier-Stokes Equations is carried out to predict the discharge coefficient of mass flow through a micro-critical nozzle. Several kinds of turbulence models and wall functions are employed to validate the computational predictions. The computed results are compared with the previous experimented ones. The present computations predict the experimental discharge coefficients with a reasonable accuracy. It is found that the standard $k-\varepsilon$ turbulence model with the standard wall function gives a best prediction of the discharge coefficients. The displacement thickness of the nozzle wall boundary layer is evaluated at the nozzle throat and is well compared to a prediction obtained by an empirical equation. The resulting displacement thickness of the wall boundary layer is about 2% to 0.6% of the diameter of the nozzle throat for the Reynolds numbers of 2000 to 20000.

  • PDF

열적발산원리를 이용한 마이크로 추진장치에 대한 연구 (Study of Micro Propulsion System Based on Thermal Transpiration)

  • 정성철;신강창;김연호;김혜환;이용우;허환일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.25-29
    • /
    • 2007
  • 마이크로 인공위성의 자세제어를 위한 마이크로 추진장치에 대한 연구는 대부분 기존의 추진장치를 소형화하는 방향으로 진행되고 있다. 본 연구에서는 이러한 미소추력 발생을 위한 노즐의 소형화로 인한 점성손실, 배압에 의한 손실 등을 대기압실험, 진공환경실험, CFD 해석을 통하여 검증하였다. 또한 마이크로 노즐에서의 유동 손실을 극복하기 위한 방법으로 열적발산원리에 대해 이론적 접근을 시도하였다. 마이크로 추진장치에 적용을 위한 열적발산원리는 움직이는 부품 없이 오직 온도 구배만으로 유동을 제어할 수 있기 때문에 추진장치의 소형화로 야기되는 손실을 극복할 수 있을 것으로 기대된다.

  • PDF