• Title/Summary/Keyword: Micro mechanical machining

Search Result 282, Processing Time 0.027 seconds

Ultrashort pulse laser induced PI film scribing (극초단파 레이저를 이용한 PI 필름 가공 기술개발)

  • Kim, Tae-Dong;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.307-311
    • /
    • 2017
  • Ultra short pulse laser processing with the PI (polyimide) substrate is conducted to increase flexibility and radius of curvatures. A femtosecond laser is used to perform micro machining by minimizing the heat effect in PI substrate. The laser processing according to the parameters, such as fabricated line width, depth, laser power, distance between lines, is carried out to understand the characteristics of fabricated lines. A bending test is carried out to evaluate bending shapes and the radius of curvature after bending and spreading it 1000 times. The results demonstrates that the radius of curvature decreases in deepen lines and increases with the augment of the number of the fabricated lines, and distance between lines.

Fabrication of Microshafts using Electrochemical Process (전해 프로세스를 이용한 미세축 제작)

  • Lim, Young-Mo;Lim, Hyung-Jun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.169-174
    • /
    • 2001
  • We proposed a new fabrication method using electrochemical process for microshafts. This method is a kind of atomic removal process by chemical reaction. Therefore, it is possible to make thin and long shafts regardless of the stiffness of materials. Because shaping process is simply switched to polishing process by varying process conditions, we can precisely fabricate microshafts with very smooth surface. We also fabricated a very thin shaft with the diameter as small as 10$\mu$m and a microshaft with high aspect ratio.

  • PDF

A Study on the chemical-mechanical polishing process of Sapphire Wafers for GaN thin film growth. (사파이어웨이퍼의 기계-화학적인 연마 가공특성에 관한 연구)

  • Nam, Jung-Hwan;Hwang, Sung-Won;Shin, Gwi-Su;Kim, Keun-Joo;Suh, Nam-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.31-34
    • /
    • 2003
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by chemical and mechanical polishing(CMP) process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of sapphire crystalline wafer at surfaces has a full width at half maximum 89 arcses. The surfaces of sapphire wafers were mechanically affected by residual stress and surface default. Sapphire wafers's waveness has higher abrasion rate in the edge of the wafer than its center due to Newton's Ring interference.

  • PDF

Optimization and Analysis of Output Pinion Design for Worm Gear Reducer (워엄기어 감속기의 출력피니언 최적설계와 해석)

  • Cho, Seonghyun;Kim, Hyeonkyeong;Kim, Dongseon;Zhen, Qin;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.108-113
    • /
    • 2020
  • Pinions are generally heavy and integrated with a shaft. Thus, fabricating a pinion is a material- and machining-intensive task characterized by low productivity. Contact of the output pinion with a sliding surface or a cloud contact causes loss of power because of friction. Consequently, the output pinion undergoes considerable wear and tear at its ends, which adversely affects the overall transmission efficiency of decelerators. To improve transmission efficiency and extend gear life, an optimum output pinion design is required. To this end, in this study, an output pinion for worm gear decelerators was designed and optimized by means of product verification through prototyping and performance evaluation to improve gear life and productivity. The optimized design was validated and subjected to structural analysis.

A Study on the Fine Particle Dispensing Conditions for a Spiral Surface of Round Aluminum Bars (알루미늄 환봉의 나선형 표면 미세입자 분사가공의 조건에 대한 연구)

  • Choi, Sung-Yun;Lee, Eun-Ju;Lee, Sea-Han;Kwon, Dae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.88-93
    • /
    • 2020
  • The goal of this study is to determine the influence of major factors on the spiral surface microparticle injection machining of cylindrical specimens by the statistical method ANOVA. Before the experiment, rod-shaped test specimens and jigs for helical surface spraying were prepared, and the surface roughness was measured with a surface roughness meter. The injection particle, nozzle diameter, and injection pressure were the primary parameters of the experiment. Other factors that were considered were injection height, injection time, revolutions, and feed distance. The surface roughness after machining was measured, and the effects of the surface roughness data on the primary factors were determined with ANOVA.

Design Evaluation of WEDM Based on Deformation Analyses and Axiomatic Design (변형해석 및 공리적 설계에 의한 와이어 방전가공기의 설계평가)

  • Lee, Hyeong-Il;U, Sang-U;Kim, Ju-Won;Kim, Chung-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.851-863
    • /
    • 2002
  • Recent industrial requirements for highly precise shape processing have brought the electric discharge machining (EDM) in great need. High precision in EDM is primarily achieved by high performance controllers. However there exists inherent precision loss due to structural micro-deformation. On this background, we study structural deformation characteristics of wire cut EDM via finite element (FE) analysis and axiomatic design. Two different wire cut EDMs are selected as analysis models. 3D CAD package I-Deas is first used to construct FE models of wire cut EDMs, and then ABAQUS FE code is used for following structural analysis. Pertinency of FE mesh refinement is discussed in terms of η -factor. It is shown that performance accuracy of EDM depends strongly on the structural characteristics. Some design enhancements are suggested in an axiomatic design point of view. Finally we provide weight and temperature induced displacement discrepancies between wire end points as position functions of each subframe.

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.