• Title/Summary/Keyword: Micro joining

Search Result 244, Processing Time 0.02 seconds

High speed precision welding using by single mode fiber laser (파이버 레이저에 의한 고속정밀 용접)

  • Park, Seo-Jeong;Lee, Mok-Yeong;Jang, Ung-Seong;Kim, Gi-Cheol;Cheon, Chang-Geun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.94-96
    • /
    • 2005
  • Welding process of ultra thin stainless steel foil was investigated using a single mode Yb-fiber laser with a CW maximum output power 40W. In micro welding, critical power density for keyhole welding was 1 to 2 orders larger higher than in macro-welding due to larger thermal conduction, extremely high speed welding becomes possible.

  • PDF

Joining Properties of CoSb3/Al/Ti/CuMo by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 CoSb3/Al/Ti/CuMo 접합 특성)

  • Kim, Min Suk;Ahn, Jong Pil;Kim, Kyoung Hun;Kim, Kyung Ja;Park, Joo Seok;Seo, Won Seon;Kim, Hyung Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.6
    • /
    • pp.549-553
    • /
    • 2014
  • $CoSb_3$-based skutterudite compounds are candidate materials for thermoelectric power generation in the mid-temperature range (600 - 900 K) because their thermoelectric properties can be enhanced by doping and filling. The joining property of thermoelectric module electrodes containing thermoelectric materials is of great importance because it can dominate the efficiency of the thermoelectric module. This study examined the properties of $CoSb_3$/Al/Ti/CuMo joined by the spark plasma sintering technique. Titanium thin foil was used to prevent the diffusion of copper into $CoSb_3$ and Aluminum thin foil was used to improve the adhesion between $CoSb_3$ and Ti. The insertion of an Aluminum interlayer between the Ti and $CoSb_3$ was effective for joining $CoSb_3$ to Ti by forming an intermediate layer at the Al-$CoSb_3$ boundary without any micro cracks. Specifically, the adhesion strength of the Ti/Al/$CoSb_3$ joining interface showed a remarkable improvement compared with our previous results, without deterioration of electrical property in the interface.

ADHESION PHENOMENON AND ITS APPLICATION TO MANIPULATION FOR MICRO-ASSEBMLY

  • Takahashi, Kunio;Himeno, Hideo;Saito, Shigeki;Onzawa, Tadao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.781-784
    • /
    • 2002
  • Adhesion phenomenon is more significant for smaller objects, because adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. For the purpose of microassembly, theoretical understanding is required for the Adhesion phenomenon. Authors have developed a force measurement system in an ultra-high vacuum chamber of Auger electron spectroscopy. The force between arbitrary combination of materials can be measured at a pressure less than 100 nPa after and before Ar ion sputtering and chemical analysis for several atomic layers of the surface. The results are successfully interpreted with a theory of contact mechanics. Since surface energy is quite important in the interpretation, electronic theory is used to evaluate the surface energy. In the manipulation of small objects, the adhesional force is always attractive. Repulsive force is essential for the manipulation. It can be generated by Coulomb interaction. The voltage required for detachment is theoretically analyzed and the effect of boundary conditions on the detachment is obtained. The possibility and limitations of micro-manipulation using both the adhesion phenomenon and Coulomb interaction are theoretically clarified. Its applicability to nano-technology is found to be expected.

  • PDF

A Simulation Study on Fluid Flowing in Micro Pump (Simulation을 통한 미세 PUMP 내에서의 유체흐름 연구)

  • 김용천;김미진;김진명;김진현;류근걸
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.233-239
    • /
    • 2002
  • The technology of joining BT (Biotechnology) with NT (Nanotechnology) must be rapidly arranged in 21c. Specially, the technical value is important more and more since the research about MEMS, which synthesizes BT and NT, is variously proceeding on the wide fields. This study by simulation shows the Fluid-Flow within micro Pump used in Bio-MEMS technology through Fluent Program. Namely, this experiment shows the most suitable external conditions and Pump Model within micro Pump by observing the flow of fluids as to the conditions of pressure, temperature and Model when the Fluid flows within micro Pump. We saw the variousness of pressure and temperature as to the existence of Chamber through examining by reference of Fluid-Flow. In the case of the existence of Chamber, the variousness of pressure and temperature is less than in the case of the non-existence of Chamber. By this simulation, we know that the Pump, which has a Chamber, affects the Fluid-Flow less than that. So we can say that it is necessary for us to design the Pump which has a Chamber.

  • PDF

A Study on the Optimization of IR Laser Flip-chip Bonding Process Using Taguchi Methods (다구찌법을 이용한 IR 레이저 Flip-chip 접합공정 최적화 연구)

  • Song, Chun-Sam;Ji, Hyun-Sik;Kim, Joo-Han;Kim, Jong-Hyeong;Ahn, Hyo-Sok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.30-36
    • /
    • 2008
  • A flip-chip bonding system using IR laser with a wavelength of 1064 nm was developed and associated process parameters were analyzed using Taguchi methods. An infrared laser beam is designed to transmit through a silicon chip and used for transferring laser energy directly to micro-bumps. This process has several advantages: minimized heat affect zone, fast bonding and good reliability in the microchip bonding interface. Approximately 50 % of the irradiated energy can be directly used for bonding the solder bumps with a few seconds of bonding time. A flip-chip with 120 solder bumps was used for this experiment and the composition of the solder bump was Sn3.0Ag0.5Cu. The main processing parameters for IR laser flip-chip bonding were laser power, scanning speed, a spot size and UBM thickness. Taguchi methods were applied for optimizing these four main processing parameters. The optimized bump shape and its shear force were modeled and the experimental results were compared with them. The analysis results indicate that the bump shape and its shear force are dominantly influenced by laser power and scanning speed over a laser spot size. In addition, various effects of processing parameters for IR laser flip-chip bonding are presented and discussed.

Plasma Electrolytic Oxidation in Surface Modification of Metals for Electronics

  • Sharma, Mukesh Kumar;Jang, Youngjoo;Kim, Jongmin;Kim, Hyungtae;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • This paper presents a brief summary on a relatively new plasma aided electrolytic surface treatment process for light metals. A brief discussion regarding the advantages, principle, process parameters and applications of this process is discussed. The process owes its origin to Sluginov who discovered an arc discharge phenomenon in electrolysis in 1880. A similar process was studied and developed by Markov and coworkers in 1970s who successfully deposited an oxide film on aluminium. Several investigation thereafter lead to the establishment of suitable process parameters for deposition of a crystalline oxide film of more than $100{\mu}m$ thickness on the surface of light metals such as aluminium, titanium and magnesium. This process nowadays goes by several names such as plasma electrolytic oxidation (PEO), micro-arc oxidation (MOA), anodic spark deposition (ASD) etc. Several startups and surface treatment companies have taken up the process and deployed it successfully in a range of products, from military grade rifles to common off road sprockets. However, there are certain limitations to this technology such as the formation of an outer porous oxide layer, especially in case of magnesium which displays a Piling Bedworth ratio of less than one and thus an inherent non protective oxide. This can be treated further but adds to the cost of the process. Overall, it can be said the PEO process offers a better solution than the conventional coating processes. It offers advantages considering the fact that he electrolyte used in PEO process is environmental friendly and the temperature control is not as strict as in case of other surface treatment processes.

Study on the Disbonding of Stainless Steel Overlay Welded Metal(Report 2) - A Metallurgical Study on PWHT of Overlaid Austenitic Stainless Steel Weld Metals - (스테인레스강 Overlay 용접부의 Disbonding 에 관한 연구(2) - 오스테나이트계 스테인레스강 오버레이 용접금속의 PWHT에 관한 야금학적 고찰 -)

  • 이영호;윤의박
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.4-17
    • /
    • 1984
  • Overlaid weld metals of austenitic stainless steel in a pressure vessel of power reactor are usually post-weld heated for a long period of time after welding. The PWHT is considered as a kind of sensitizing and it is important to check the soundness of the weld metal after PWHT, especially about the precipitation of carbides. The purpose of this report is to obtain information on the relation between the change of microstructure and Post-Weld Heat Treatment in the overlaid weld metals. Metallurgical aspects of the problem on austenitic stainless steel heated at $625^{\circ}C$, $670^{\circ}C$, $720^{\circ}C$ and $760^{\circ}C$ for 3, 10, 30, 100 and 300 hours have been investigated by means of optical-micrography, micro-hardness measurement, scanning electron microscope and electron-probe micro analysis. From the results obtained, the following conclusions are drawn; 1) The PWHT above $625^{\circ}C$ for a long time causes a diffusion of carbon atoms from low alloy steel into stainless steel, and consequently carbon is highly concentrated at the boundary layer of stainless steel. 2) C in ferritic steel migrated to austenitic steel and carbides precipitated in austenitic steel along fusion line. At higher temperatures, the ferrite grains coarsened in the decarburized zone. 3) In the change of microstructure of stainless steel overlaid weld metal, the width of carbides precipitated zone and decarburized zone increased with increase of PWHT temperature and time. 4) At about $625^{\circ}C$ to $760^{\circ}C$, chromium carbides, mainly $M_{23} C_6$, precipitate very closely in the carburized layer with remarkable hardening. 5) Precipitation of delta ferrite from molten weld metal depends on solidification phenomenon. There was a small of ferrite near the bond in which the local solidification time was short, comparing with after parts of weld metal. Shape and amount of ferrite were not changed by Post-Weld Heat Treatment after solidification.

  • PDF

Evaluation of Corrosion Resistance and Weldability for the Butt Welding Zone of Hot Rolled Clad Steel Plates (열간압연 클래드강의 맞대기용접부 내식성 및 용접성 평가)

  • Park, Jae-Won;Lee, Chul-Ku
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • We have investigated the traits of clad metals in hot-rolled clad steel plates, including the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516), under various specific circumstances regarding post heat treatment, multilayered welds, and thick or repeated welds for repair. For evaluations, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by micro vickers hardness, tensile, and etching tests the results were compared with those of EPR tests. The clad steel plates were butt-welded using FCAW and SAW with the time of heat treatment as the variable, a that was conducted at $625^{\circ}C$, for 80, 160, 320, 640, and 1280 min. Then, the change in corrosion resistance was evaluated in these specimens. With carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro-hardness gradually increased and decreased after 640 min. The elongation and contraction of the area also increased gradually. The oxalic acid etch test and EPR test on STS316 and the clad metal showed STEP structure and no sensitization. From the test results on multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. The purpose of this study was to suggest some considerations for developing on-site techniques to evaluate the sensitization of stainless steels.

Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630 (관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響))

  • Sae-Kyoo,Oh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

Effect of PCB Surface Finishs on Intermetallic Compound Growth Kinetics of Sn-3.0Ag-0.5Cu Solder Bump (Sn-3.0Ag-0.5Cu 솔더범프의 금속간화합물 성장거동에 미치는 PCB 표면처리의 영향)

  • Jeong, Myeong-Hyeok;Kim, Jae-Myeong;Yoo, Se-Hoon;Lee, Chang-Woo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.81-88
    • /
    • 2010
  • Thermal annealing and electromigration test were performed at $150^{\circ}C$ and $4{\times}10^3\;A/cm^2$ conditions in order to investigate the effect of PCB surface finishs on the growth kinetics of intermetallic compound (IMC) in Sn-3.0Ag-0.5Cu solder bump. The surface finishes of the electrodes of printed circuit board (PCB) were organic solderability preservation (OSP), immersion Sn, and electroless Ni/immersion gold (ENIG). During thermal annealing, the OSP and immersion Sn show similar IMC growth velocity, while ENIG surface finish had much slower IMC growth velocity. Applying electric current accelerated IMC growth velocity and showed polarity effect due to directional electron flow.