• 제목/요약/키워드: Micro generator

검색결과 245건 처리시간 0.029초

압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기 (A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film)

  • 송현철;김상종;문희규;강종윤;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

초미세기포-용존오존부상(DOF)공정을 이용한 염색폐수 처리수의 재이용 (Reclamation of Effluent Textile Wastewater Using Micro/nano Bubbles-Dissolved Ozone Flotation Process)

  • 정병길;이기형;정진희;장성호;조도현;성낙창
    • 한국환경과학회지
    • /
    • 제20권3호
    • /
    • pp.291-299
    • /
    • 2011
  • The main objectives of this research are to investigate characteristics of ozone solubility due to low solubility of conventional bubbles-ozone generators, evaluate the treatment characteristics of reclaiming textile wastewater for industrial water by means of micro/nano bubbles-dissolved ozone flotation(MNB-DOF) process. The textile wastewater used in this research was obtained from final effluent of the textile wastewater in B city. There is a 400L reactor which consists of a micro-nano bubble system and a ozone generator for experiments. As a result of generating micro-nano bubbles (below $0.5{\mu}m$) by using of MNB-DOF process, it improved ozone solubility due to higher ozone transfer rates. Consequently, the shorter ozonation time clearly indicates the lower power costs. The reported results clearly indicated that MNB-DOF process can be effectively and inexpensively. Results of the experiments through MNB-DOF process in this study satisfy all reclaiming standards as industrial water: pH 6.5~8.5, SS 10 mg/L or below, $BOD_5$) 6 mg/L or below, turbidity 10 NTU or below, Coliforms 1,000/100 mL or below. Therefore there is a possibility of the reclaiming of the textile wastewater as industrial water.

PCB 4층 사각코일과 Nd 자석을 이용한 초소형발전기의 특성 (Characterization of a Micro Power Generator using a Fabricated Square Coil of 4 Layers and Nd Magnet)

  • 이동호;김성일;이윤표;장영수
    • 마이크로전자및패키징학회지
    • /
    • 제14권4호
    • /
    • pp.57-61
    • /
    • 2007
  • PCB제작방법으로 제작한 4층 사각코일과 Nd 영구자석을 이용하여 초소형발전기를 제작하였다. 선폭이 $100{\mu}m$로 제작된 4층 사각코일의 크기는 두께가 1.6 mm 면적이 $1{\times}1cm^2$$2{\times}2cm^2$이다. 진동발생장치를 제작하고 코일위에서 Nd 영구자석을 수평으로 움직여 교류전압을 발생시켰다. 진동수를 0.5 Hz에서 7 Hz까지 변화시키면서 전압 값을 측정하였다. 5.5 Hz의 진동을 발생시켜 $1{\times}1cm^2$의 크기의 코일에서 62 mV의 교류전압이 발생하였고 $2{\times}2cm^2$의 크기의 코일에서 245 mV의 교류전압이 발생하였다. 7 Hz의 진동수에서 $2{\times}2cm^2$의 크기의 코일에서 320 mV의 교류전압이 발생하였고 채배정류회로를 이용할 때는 7 Hz의 진동수에서 400 mV의 직류전압이 발생하였다.

  • PDF

초고속 회전체용 공기 포일 베어링의 동특성 계수 측정을 위한 전자석 가진장치에 관한 연구 (Study on the Electromagnetic Excitation System for the Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor)

  • 박철훈;최상규;함상용
    • 한국유체기계학회 논문집
    • /
    • 제16권3호
    • /
    • pp.18-25
    • /
    • 2013
  • Recently the requirement of long-term mobile energy source for mobile robot or small-sized unmanned vehicle is highly increased, and the micro turbine generator(MTG) which is known to have high energy and power density is under development. MTG is designed to have air foil bearing and high speed rotor of which operating speed is 400,000rpm. In the development stage of high speed rotor and bearing, stability analysis for the full operational speed range is essential and the dynamic coefficients such as stiffness and damping coefficients of bearing depending on the rotational speed are required for that. Although perturbation method is usually used to identify the dynamic coefficients, it's not easy to give the perturbation to the high speed rotating rotor. In this study, we present the dynamic coefficients measurement system for air foil bearing which consists of electromagnets, gap sensors, high speed motor and controller. This measurement system can exert the sine sweep force to the rotor-bearing, measure the displacement of rotor and get FRF(Frequency response function) of rotor-bearing. The least square estimation method is applied to identify the dynamic coefficients of bearing from the measured frequency response at the different rpm and the identified dynamic coefficients for the wide rotational speed range are presented.

Experimental investigation of Scalability of DDR DRAM packages

  • Crisp, R.
    • 마이크로전자및패키징학회지
    • /
    • 제17권4호
    • /
    • pp.73-76
    • /
    • 2010
  • A two-facet approach was used to investigate the parametric performance of functional high-speed DDR3 (Double Data Rate) DRAM (Dynamic Random Access Memory) die placed in different types of BGA (Ball Grid Array) packages: wire-bonded BGA (FBGA, Fine Ball Grid Array), flip-chip (FCBGA) and lead-bonded $microBGA^{(R)}$. In the first section, packaged live DDR3 die were tested using automatic test equipment using high-resolution shmoo plots. It was found that the best timing and voltage margin was obtained using the lead-bonded microBGA, followed by the wire-bonded FBGA with the FCBGA exhibiting the worst performance of the three types tested. In particular the flip-chip packaged devices exhibited reduced operating voltage margin. In the second part of this work a test system was designed and constructed to mimic the electrical environment of the data bus in a PC's CPU-Memory subsystem that used a single DIMM (Dual In Line Memory Module) socket in point-to-point and point-to-two-point configurations. The emulation system was used to examine signal integrity for system-level operation at speeds in excess of 6 Gb/pin/sec in order to assess the frequency extensibility of the signal-carrying path of the microBGA considered for future high-speed DRAM packaging. The analyzed signal path was driven from either end of the data bus by a GaAs laser driver capable of operation beyond 10 GHz. Eye diagrams were measured using a high speed sampling oscilloscope with a pulse generator providing a pseudo-random bit sequence stimulus for the laser drivers. The memory controller was emulated using a circuit implemented on a BGA interposer employing the laser driver while the active DRAM was modeled using the same type of laser driver mounted to the DIMM module. A custom silicon loading die was designed and fabricated and placed into the microBGA packages that were attached to an instrumented DIMM module. It was found that 6.6 Gb/sec/pin operation appears feasible in both point to point and point to two point configurations when the input capacitance is limited to 2pF.

편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계 (Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications)

  • 민철홍;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제22권11호
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

러너베인 각도에 따른 튜블러 수차의 속도 및 압력분포 (Velocity and Pressure Distributions of Tubular-type Hydroturbine for Variable Runner Vane Angle)

  • 남상현;김유택;최영도;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2839-2844
    • /
    • 2007
  • Micro hydraulic power generation of which the output is less or equal to a 100kW is attracting considerable attention. This is because of its small, simple, renewable, and abundant energy resources. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Moreover influences of pressure and velocity distributions with the variations of runner vane angle on turbine performance are investigated by using a commercial CFD code.

  • PDF

마이크로그리드 과도상태 시 전력 수급 균형 전략 (Power Balancing Strategy in the Microgrid During Transient)

  • 서재진;이학주;정원욱;원동준
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.707-714
    • /
    • 2010
  • When problems such as line fault, breakdown of a substation or a generator, etc. arise on the grid, the Microgrid is designed to be separated or isolated from the grid. Most existing DGs(Distributed Generators) in distribution system use rotating machine. However, new DGs such as micro gas turbine, fuel cell, photo voltaic, wind turbine, etc. will be interfaced with the Microgrid through an inverter. So the Microgrid may have very lower inertia than the conventional distribution system. By the way, the rate of change of frequency depends on the inertia of the power system. Moreover, frequency has a strong coupling with active power in power system. Because the frequency of the Microgrid may change rapidly and largely during transient, appropriate and fast control strategy is needed for stable operation of the Microgrid. Therefore, this paper presents a power balancing strategy in Microgrid during transient. Despite of strong power or frequency excursions, power balancing in the Microgrid can be maintained.

독립형 풍력기반 Smart Microgrid 시스템의 현장 실증 시험을 위한 도서지역 전력 및 경제성 시뮬레이션 (Power and Economic Simulation of Island for the Field Demonstration Test of Smart Microgrid System Based on Stand-alone Wind power)

  • 강상균;이은규;이장호
    • 신재생에너지
    • /
    • 제10권3호
    • /
    • pp.22-30
    • /
    • 2014
  • The isolated self-generating electricity with diesel engine generator has been used in islands far away from main land. It costs high because of increasing oil price, and unsafe to have supplying oil and its related components by ship due to unexpectable marine conditions. Therefore there is the need for the hybrid system of renewable energy like wind or solar energy systems with oil engine generator, which can reduce oil use and extend oil supplying period. In this study, the feasibility of such hybrid system with smart micro grid on the eight islands of Jeon-nam province is surveyed to find good place for the demonstration test of the hybrid system. In each island, 3 wind turbine systems of 10 kW and photovoltaic of 20 kW are tested with already installed diesel engine. The performance and costs of the hybrid system in each island are compared in the given conditions of solar and wind energy potential. As a result of the study, Jung-ma island is recommended for the optimum place to make real field demonstration test of isolated hybrid generating and smart grid systems.