• 제목/요약/키워드: Micro elements

검색결과 429건 처리시간 0.028초

탄성표면파 듀플렉서용 마이크로 스트립라인 집중소자 해석 및 실험 (Analysis and Experiment of Micro-strip Line Lumped Elements for SAW Duplexers)

  • 이승희;노용래
    • 한국전기전자재료학회논문지
    • /
    • 제15권1호
    • /
    • pp.85-92
    • /
    • 2002
  • In this study, we analyzed and experimented micro-strip line inductors and capacitors for a SAW duplexer, an important devise for mobile communication. For SAW duplexers, micro-strip line lumped elements must have small impedance values, below several tens of nH or several tens of pF, and a small area pattern. In this study, we performed theoretical analysis of flat line type, meander line type, and spiral line type inductors and interdigital capacitors on a LiTaO$_3$ Piezo-crystal. We proposed a measurement method to evaluate small values of lumped elements accurately with network analyzer. In experiments, we confirmed validity of the theoretical analysis method through fabrication and characterization of micro-strip line lumped elements. The analysis method in this paper can be applied to SAW duplexers well as other microwave devices.

다단계 온도 감지막을 가진 고영역 흐름측정용 마이크로 흐름센서 (A Micro-Flow Sensor With Multiple Temperature Sensing Elements for Wide Range Flow Velocity Measurement)

  • 정완영;김태용;서용수
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.85-92
    • /
    • 2006
  • A new silicon micro flow sensor with multiple temperature sensing elements was proposed and fabricated in considering wide range flow velocity measuring device. Thermal mass flow sensor measures the asymmetry of temperature profile around the heater which is modulated by the fluid flow. A micro mass flow sensor was normally composed of a central heater and a pair of temperature sensing elements around it. A new 2-D wide range micro flow sensor structure with three pairs of temperature sensing elements and a central heater was proposed and numerically simulated by Finite Difference Formulation to confirm the feasibility of the wide flow range sensor structure. To confirm the simulation result, the new flow sensor was fabricated on silicon substrate and the basic flow sensing properties of the sensor were measured.

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

페라이트-펄라이트 조직 저탄소강의 미세조직과 인장 특성의 상관관계에 미치는 미량합금원소와 변태 온도의 영향 (Effect of Micro-Alloying Elements and Transformation Temperature on the Correlation of Microstructure and Tensile Properties of Low-Carbon Steels with Ferrite-Pearlite Microstructure)

  • 이상인;이지민;황병철
    • 한국재료학회지
    • /
    • 제27권4호
    • /
    • pp.184-191
    • /
    • 2017
  • This present study deals with the effect of micro-alloying elements and transformation temperature on the correlation of microstructure and tensile properties of low-carbon steels with ferrite-pearlite microstructure. Six kinds of low-carbon steel specimens were fabricated by adding micro-alloying elements of Nb, Ti and V, and by varying isothermal transformation temperature. Ferrite grain size of the specimens containing mirco-alloying elements was smaller than that of the Base specimens because of pinning effect by the precipitates of carbonitrides at austenite grain boundaries. The pearlite interlamellar spacing and cementite thickness decreased with decreasing transformation temperature, while the pearlite volume fraction was hardly affected by micro-alloying elements and transformation temperature. The room-temperature tensile test results showed that the yield strength increased mostly with decreasing ferrite grain size and elongation was slightly improved as the ferrite grain size and pearlite interlamellar spacing decreased. All the specimens exhibited a discontinuous yielding behavior and the yield point elongation of the Nb4 and TiNbV specimens containing micro-alloying elements was larger than that of the Base specimens, presumably due to repetitive pinning and release of dislocation by the fine precipitates of carbonitrides.

미량합금 원소가 첨가된 2상 조직강의 인장 특성에 미치는 마르텐사이트 분율의 영향 (Effect of Martensite Fraction on the Tensile Properties of Dual-phase Steels Containing Micro-alloying Elements)

  • 임현석;김지연;황병철
    • 열처리공학회지
    • /
    • 제30권3호
    • /
    • pp.106-112
    • /
    • 2017
  • In this study dual-phase steels with different ferrite grain size and martensite fraction were fabricated by varying micro-alloying elements and intercritical anneling temperatures, and then the tensile properties were investigated in terms of yield and tensile strengths, elongation, and yield ratio. The addition of micro-alloying elements reduced ferrite grain size, and the increased intercritial transformation tempeature increased the martensite fracton. The tensile test results showed that yield and tensile strengths of all the steel specimens increased with increasing the martensite fraction. However, the elongation and yield ratio were differently changed according to variations in the morphology and carbon content of martensite, ferrite grain size, and precipitates resulting from the addition of micro-alloying elements and intercritical annealing.

변형률 속도에 따른 탄소강의 재결정 거동에 미치는 미량 합금 원소의 영향 (Effect of Micro-Alloying Elements on Recrystallization Behavior of Carbon Steels at Different Strain Rates)

  • 이상인;임현석;황병철
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.535-541
    • /
    • 2016
  • The present study deals with the effects of micro-alloying elements such as Ni, V, and Ti on the recrystallization behavior of carbon steels at different strain rates. Eight steel specimens were fabricated by varying the chemical composition and reheating temperature; then, a high-temperature compressive deformation test was conducted in order to investigate the relationship of the microstructure and the recrystallization behavior. The specimens containing micro-alloying elements had smaller prior austenite grain sizes than those of the other specimens, presumably due to the pinning effect of the formation of carbonitrides and AlN precipitates at the austenite grain boundaries. The high-temperature compressive deformation test results indicate that dynamic recrystallization behavior was suppressed in the specimens with micro-alloying elements, particularly at increased strain rate, because of the pinning effect of precipitates, grain boundary dragging and lattice misfit effects of solute atoms, although the strength increased with increasing strain rate.

마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형 (Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding)

  • 문수동;안수호;강신일
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

DUPIC 핵연료봉 봉단 용접부 건전성 확인을 위한 미세초점 X-선 투과시험에 관한 연구 (A Study on the Micro-Focus X-Ray Inspection for Confirming the Soundness of End Closure Weld of DUPIC Fuel Elements)

  • 김웅기;김수성;이정원;양명승
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.88-94
    • /
    • 2001
  • DUPIC (Direct use of spent PWR fuel in CANDU reactors) nuclear fuel is a CANDU fuel fabricated remotely from spent PWR fuel materials in a hot cell. The soundness of the end closure welds of nuclear fuel elements is an important factor for the safety and performance of nuclear fuel. To evaluate the soundness of the end closure welds of DUPIC fuel element, a precise X-ray inspection system is developed using a micro-focus X-ray generator with an image intensifier and a real time camera system. The fuel elements made of Zircaloy-4 and stainless steel by an Nd:YAG laser welding and a TIG welding aye inspected by the developed inspection system. The soundness of the welds of the fuel elements was confirmed by the X-ray inspection process, and the irradiation test of DUPIC fuel elements has been successfully completed at the HANARO research reactor.

  • PDF

Chemical Transformation of Individual Asian Dust Particles Estimated by the Novel Double Detector System of Micro-PIXE

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권2호
    • /
    • pp.106-114
    • /
    • 2010
  • By the application of novel double detector system of micro-PIXE that can detect light elements (Z<14), we made an attempt to provide a thorough discussion on the aging processes of Asian dust (hereafter called "AD") particle by reaction with sea-slat. The elemental spectra and maps obtained from the microbeam radiation of micro-PIXE to individual AD particles were useful for fractionating AD particles into both internally and externally mixed particles. A spatial distribution of elements in a minute domain of single particle obtained by scanning the microbeam irradiation enabled us not only to estimate the chemical mixing state of individual AD particles but also to presume their aging processes in both ambient air and cloud. By calculating the normalized micro-PIXE net count of elements, it was possible to classify individual AD particles into three distinct groups (i.e., (1) Aging type 1: AD particle coated by the gaseous Cl evaporated by the reaction between artificial acids and sea salt; (2) Aging type 2: AD particle mixed with sea salt but no additional reaction with artificial acids; and (3) Non-aged type) A relatively high transformation rate (63.3-75.9%) was shown in large particles (greater than $5.1\;{\mu}m$ in diameter).

Preliminary Study on the Elemental Quantification of in Ambient Liquid Samples of Microliter Volume Using the In-air Micro-PIXE Technique

  • Ma, Chang-Jin;Lim, Cheol-Soo;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권1호
    • /
    • pp.54-60
    • /
    • 2017
  • Quantifying the trace elements in infinitesimal ambient liquid samples (e.g., single raindrop, cloud/fog water, and the soluble fraction extracted from the particles collected for a short time) is an important task for understanding formation processes, heating/cooling rates, and their health hazards. The purpose of this study is to employ an in-air micro PIXE system for quantitative analysis of the trace elements in a thimbleful of reference liquid sample. The bag type liquid sample holder originally designed with $10{\mu}m$ thick $Mylar^{(R)}$ film retained the original shape without any film perforation and apparent peaks of film blank by the end of the analysis. As one of tasks to be solved, the homogeneity of the elemental distribution in liquid reference species was verified by the X-ray line profiles for several references. It was possible to resolve the significant peaks for whole target elements corresponding to the channel number of micro-PIXE spectrum. The calibration curves for the six target elements (Si, S, Cl, Fe, Ni, and Zn) in standard solutions were successfully plotted by concentration (ppm) and ROI of interest net counts/dose (nC).