Browse > Article
http://dx.doi.org/10.12656/jksht.2017.30.3.106

Effect of Martensite Fraction on the Tensile Properties of Dual-phase Steels Containing Micro-alloying Elements  

Lim, Hyeon-Seok (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kim, Ji-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.30, no.3, 2017 , pp. 106-112 More about this Journal
Abstract
In this study dual-phase steels with different ferrite grain size and martensite fraction were fabricated by varying micro-alloying elements and intercritical anneling temperatures, and then the tensile properties were investigated in terms of yield and tensile strengths, elongation, and yield ratio. The addition of micro-alloying elements reduced ferrite grain size, and the increased intercritial transformation tempeature increased the martensite fracton. The tensile test results showed that yield and tensile strengths of all the steel specimens increased with increasing the martensite fraction. However, the elongation and yield ratio were differently changed according to variations in the morphology and carbon content of martensite, ferrite grain size, and precipitates resulting from the addition of micro-alloying elements and intercritical annealing.
Keywords
dual phase steel; micro-alloying elements; martensite fraction; grain size; tensile test;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. T. Llewellyin and D. J. Hillis : Ironmak. and Steelmak., 23 (1996) 471.
2 A. Bag, K. K. Ray and E. S. Dwarakadasa : Metall. Mater. Trans. A., 30 (1999) 1193.   DOI
3 R. G. Davies : Metall. Trans. A., 9 (1978) 671.   DOI
4 P. H. Chang and A. G. Preban : Acta Metall., 33 (1985) 897.   DOI
5 ASTM : E112, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshocken (1996)
6 T. Gladman, I. D. McIvor and F. B. Pickering : J. Iron. Steel. Inst., 209 (1971) 380
7 C. Zener and J. H. Holloman : J. Appl. Phys., 15, (1944) 22   DOI
8 T. Gladman : Proc. R. Soc., 294 (1966) 298   DOI
9 K. B. Kang, O. Kwon, W. B. Lee and C. G. Park : Scr. Meter., 36 (1997) 1303   DOI
10 S. S. Hansen, J. B. Vander Sande and M. Cohen : Metall. Trans. A., 11 (1980) 387   DOI
11 S. Kim and S. Lee : Metall. and Mater. Trans. A., 31 (2000) 1753   DOI
12 M. Calcagnotto, Y. Adachi, D. Ponge and D. Raabe : Acta Mater., 59 (2011) 658   DOI
13 P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari and N. Parvin : Mater. Sci. Eng. A., 518 (2009) 1   DOI
14 Y. S. Byun, I. S. Kim and S. J. Kim : Trans. Iron Steel Inst. Jpn., 24 (1984) 372   DOI
15 N. K. Balliger and T. Gladman : Metal. Sci., 15 (1981) 95
16 S. Sodjit and V. Uthaisangsuk : Mater. and Des. 41 (2012) 370   DOI
17 A. M. Sarosiek and W. S. Owen : Mater. Sci. Eng. 66 (1984) 13   DOI
18 A. Kumar., S. B. Singh and K. K. Ray : Mater. Sci. Eng. A., 474 (2008) 270   DOI
19 G. Avramovic-Cingara, C. A. R. Saleh, M. K. Jain and D. S. Wilkinson : Metall. Mater. Trans. A., 40 (2009) 3117.   DOI
20 T. S. Byun and I. S. Kim : J. Mater. Sci., 28 (1993) 2923   DOI
21 J. W. Lee, S. J. Lee and B. C. De Cooman : Mater. Sci. Eng. A., 536 (2012) 231.   DOI