• Title/Summary/Keyword: Micro element

Search Result 821, Processing Time 0.033 seconds

Optimal Design of Stem Shape for Artificial Hip Prosthesis with Unbonded Cement Mantle (시멘트 비접착 인공 고관절의 주대 형상 최적 설계)

  • Choi, Don-Ok;Yoon, Yong-San
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.932-938
    • /
    • 2001
  • This study is concerned with the shape optimization of stem for the artificial hip prosthesis with unbonded cement mantle. The artificial hip prosthesis with unbonded cement mantle allows a stem to slip on cement mantle because of polished stem surface. Unbonded cement mantle type has several advantages compared with bonded cement mantle type, for example, small micro motion, preventing stress shielding and so on. In this study, 2-dimensional axisymmetric model was developed with considering characteristics of unbonded cement mantle. Moreover, optimal shape of stem was obtained by using feasible direction method. The objective of this optimization is maximizing supported vertical loading. The slip motion and stresses of stem, cement mantle and bone is used for constraints. The optimal shape which obtained by this study has slope of 0.15 in proximal part and maintains the width about 5mm in distal part In addition, simplified 3-dimensional analysis which applying optimal shape is carried out. The result of 3-dimensional analysis showed that optimal shape has some advantages for cement mantle stress. However, more realistic 3-dimensional analysis which including bending effect, complex geometries etc. is needed in further research.

  • PDF

Toward the computational rheometry of filled polymeric fluids

  • Hwang, Wook-Ryol;Hulsen Martien A.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.171-181
    • /
    • 2006
  • We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Fabrication of Large Area Silicon Mirror for Integrated Optical Pickup (집적형 광 픽업용 대면적 실리콘 미러 제작)

  • Kim, Hae-Sung;Lee, Myung-Bok;Sohn, Jin-Seung;Suh, Sung-Dong;Cho, Eun-Hyoung
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.182-187
    • /
    • 2005
  • A large area micro mirror is an optical element that functions as changing an optical path by reflection in integrated optical system. We fabricated the large area silicon mirror by anisotropic etching using MEMS for implementation of integrated optical pickup. In this work, we report the optimum conditions to better fabricate and design, greatly improve mirror surface quality. To obtain mirror surface of $45^{\circ},\;9.74^{\circ}$ off-axis silicon wafer from (100) plane was used in etching condition of $80^{\circ}C$ with 40wt.% KOH solution. After wet etching, polishing process by MR fluid was applied to mirror surface for reduction of roughness. In the next step, after polymer coating on the polished Si wafer, the Si mirror was fabricated by UV curing using a trapezoid bar-type way structure. Finally, we obtained peak to valley roughness about 50 nm in large area of $mm^2$ and it is applicable to optical pickup using blu-ray wavelength as well as infrared wavelength.

  • PDF

The development of Dy free MAGFINE and its applications to Motors

  • Honkura, Yoshinobu
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.95-95
    • /
    • 2013
  • The NdFeB magnet can be classified into the sintered magnet and bonded magnet. The former has superior magnet characteristics but the degree of freedom in shape is highly restricted, whereas the latter has a high degree of freedom, but its magnet characteristics are inferior to the former. When a NdFeB magnet is used at the elevated temperature, part of Nd must be replaced with a high priced Dy to increase its coercive force. For these reasons, a Dy free and high performance NdFeB bonded magnet is desired strongly. The author successfully developed a Dy free NdFeB anisotropic bonded magnet based on discovery of new phenomena called as d-HDDR reaction and its mass production process such as a thermally balanced hydrogen reaction furnace, micro capsuled powder, compression molding / injection molding under magnetic field, magnetic die and so on. Applied to DC brush seat motor for automotive use, the motor has become 50% small in size and weight. The commercialization of a half sized motor for automotive use has been realized up to the market share of 30%. At present, its commercialization is extending to various types of motors such as power tool, ABS motor, wiper motor, window motor, electric bike power motor, and compressor motor. It is expected that the applications will be increasingly enlarged to EV motor, wind generator, EPS motor, washing machine, and glass cutting machine. This innovative technology has realized Dy free high performance magnet and mudt make big contribution to not only rare element strategies but also energy conservation.

  • PDF

Analysis of Viscoplastic Softening Behavior of Concrete under Displacement Control (변위제어하에서 콘크리트의 점소성 연화거동해석)

  • Kim, Sang-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.185-193
    • /
    • 1995
  • The softening behaviors of concrete have been the object of numerous experimental and numerical studies, because the load carrying capacity of cracked concrete structure is not zero. Numerical studies are devoted to the investigation of three-dimensional softening behaviors of concrete on the basis of a viscoplastic theory, which may be able to represent the effects of plasticity and also of rheology. In order to properly describe material behaviors corresponding to different stress levels, two surfaces in stress space are adopted; one is a yield surface, and the other is a failure or bounding surface. When a stress path reaches the failure surface, it is considered that the softening behaviors are initiated as micro-cracks coalesce and are simulated by assuming that the actual strain increments in the post-peak region are less than the equivalent viscoplastic strain increment. The experimental studies and the finite element analyses have been carried out under the displacement control. Numerically simulated results indicate that the model is able to predict the essential characteristics of concrete behaviors such as the non-linearity, stiffness degradation, different behaviors in tension and compression, and specially dilatation under uniaxial compression.

  • PDF

Multi-scale Analysis of Thin Film considering Surface effects (표면효과를 고려한 박막구조의 멀티스케일 해석)

  • Choi, Jin-Bok;Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.427-432
    • /
    • 2007
  • In general, the response of bulk material is independent of its size when it comes to considering classical elasticity theory. Because the surface to bulk ratio of the large solids is very small, the influence of surface can be negligible. But the surface effect plays important role as the surface to bulk ratio becomes larger, that is, the contribution of the surface effect must be considered in nano-size elements such as thin film or beam structure. Molecular dynamics computation has been a conventional way to analyze these ultra-thin structures but this method is limited to simulate on the order of $10^6-10^8$ atoms for a few nanoseconds, and besides, very time consuming. Analysis of structures in submicro to micro range(thin-film, wire etc.) is difficult with classical molecular dynamics due to the restriction of computing resources and time. Therefore, in this paper, the continuum-based method is considered to simulate the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film.

  • PDF

Numerical Simulation for Urban Climate Assessment and Hazard (도시기후 평가와 방재를 위한 도시기상 수치모의)

  • O, Seong-Nam
    • Magazine of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.4 s.7
    • /
    • pp.40-47
    • /
    • 2002
  • Since it is important to understand the bio-climatic change in Seoul for ecological city planning in the future, this paper gives an overview on bio-climate analysis of urban environments at Seoul. We analyzed its characteristics in recent years using the observations of 24 of Automatic Weather Station (AWS) by Korea Meteorological Administration (KMA). In urbanization, Seoul metropolitan area is densely populated and is concentrated with high buildings. This urban activity changes land covering, which modifies the local circulation of radiation, heat and moisture, precipitation and creating a specific climate. Urban climate is evidently manifested in the phenomena of the increase of the air temperature, called urban heat Island and in addition urban sqall line of heavy rain. Since a city has its different land cover and street structure, these form their own climate character such as climate comfort zone. The thermal fold in urban area such as the heat island is produced by the change of land use and the air pollution that provide the bio-climate change of urban eco-system. The urban wind flow is the most important climate element on dispersion of air pollution, thermal effects and heavy shower. Numerical modeling indicates that the bio-climatic transition of wind wake in urban area and the dispersion of the air pollution by the simulations of the wind variation depend on the urban land cover change. The winds are separately simulated on small and micro-scale at Seoul with two kinds of kinetic model, Witrak and MUKLIMO.

  • PDF

Optimal Conditions of Aerosol Flow Generation for High-density and Uniform Fog Screen (고밀도 균일 안개스크린을 위한 에어로졸 유동의 최적 생성조건)

  • Shin, Dongsoo;Song, Wooseok;Kim, Jinwon;Kim, Woojin;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • The fog screen is a device projecting the media to the aerosol flow field. As major parameters to generate dense and steady fog screen, shear stress, optical blockage ratio and SMD were obtained result through experiment. The micro droplet was generated by the piezo oscillation element, and the aerosol flow mixed with an air flow was sprayed into the vertical direction from the top of the fog screen through the 280 mm slot. For produce a dense, uniform fog screen, the shear effect, optical blockage ratio and SMD between aerosol and air curtain were measured. The minimum and maximum shear stress conditions were selected and it was confirmed that the optical transmission deviation of the aerosol flow field was small when the aerosol and air curtain flow rates were changed. When the aerosol and air curtain flow power were 18 V (1.51 m/s) and 24 V (2.55 m/s), respectively, under the condition of the minimum shear stress and laminar flow, the optical blockage ratios with the spray length were small, and it produced a most stable and high density uniform fog screen by injecting a constant of $10{\mu}m$ or less.

Effect of the Groove Shape of Ultra Thick Box-Column with Center Segregation under High Heat Input for Corner Welding (중심 편석층이 있는 극후판 박스-칼럼의 대입열 코너이음 용접시 그루브 형상의 영향)

  • 최원규;이종봉;권영두;구남서
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.72-79
    • /
    • 2002
  • In this study, time-dependent distributions of temperature and stresses, in the box-column welded from ultra thick plates with center segregation, has been analyzed by the commercial finite element package SYSWELD+, for several types and angles of groove. The major points of investigation are the optimum type and angle of groove that minimize weld stress specially at the center segregation, as well as temperature distribution, residual stresses and changes in the mechanical properties. The results can be summarized as follows; 1) Generally the thermal cycle at the root of groove exhibits relatively rapid cooling pattern, however, most of the other part weldment have a slow cooling pattern in all groove types. 2) Most of the micro-structures of weldment are composed of ferrite and pearlite, meanwhile we could find martensite and bainite locally a the root of the groove. 3) Optimum groove type for high heat input welding of box-column corner is a double groove type, and the optimum angle for the groove is 30~$45^{\circ}$ that minimize deformation and weld stress at the center segregation.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.