AgAolsl A 22YES HAY ARATHY

Analysis of Viscoplastic Softening Behavior of Concrete
under Displacement Control
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ABSTRACT

The softening behaviors of concrete have been the object of numerous experimental and numerical
studies, because the load carrying capacity of cracked concrete structure is not zero. Numerical studies
are devoted to the investigation of three-dimensional softening behaviors of concrete on the basis of a
viscoplastic theory, which may be able to represent the effects of plasticity and also of rheology. In
order to properly describe material behaviors corresponding to different stress levels, two surfaces in
stress space are adopted; one is a yield surface, and the other is a failure or bounding surface. When a
stress path reaches the failure surface, it is considered that the softening behaviors are initiated as
micro-cracks coalesce and are simulated by assuming that the actual strain increments in the post-peak
region are less than the equivalent viscoplastic strain increment. The experimental studies and the finite
element analyses have been carried out under the displacement control. Numerically simulated results
indicate that the model is able to predict the essential characteristics of concrete behaviors such as the
non-linearity, stiffness degradation, different behaviors in tension and compression, and specially
dilatation under uniaxial compression.

INTRODUCTION

Concrete is a composite made up of hydrated cement paste, sand and stone aggregate, air voids, free
water, and some chemical additives. In order to develop a mathematical theory with the aim of
modeling its constitutive behavior, it is necessary to understand and rationalize the various characteristics
recorded in the laboratory experiments. The degree of stress-strain non-linearity depends upon the stress
level to which material is subjected. Under low stress levels, it exhibits almost linear behavior and
becomes increasingly nonlinear with increasing stress level. The stress-strain curve in compression
exhibits more non-linearity than that in tension. This non-linearity is due not only to the composite
action of the material, but also to the strength of the cement paste-aggregate bond. Concretes with low
bond strength exhibit strongly nonlinear curves, whereas higher strength concretes derive their higher
strength partially from bond strength, which delays micro-cracking and makes the stress-strain curves
more linear. As a result, the theory of viscoplasticity and the two surfaces theory are adopted to
simulate the three dimensional behavior of concrete structure properly. One of the two surfaces is the
initial yield surface and the other is the bounding failure surface (Voyiadjis and Abu-Lebdeh, 1993).

Owing to the assumption that the viscoplastic properties of the material manifest only after the
passage to the plastic state and that these properties are not essential in elastic state, the viscoplastic
state can be determined using the yield function comesponding to material used in the analysis. When
the state of stress is within the yield surface in the principal stress space, its state can be represented
by the theory of elasticity. But when the state stress is beyond the yield surface, it may be expressed
by the theory of viscoplasticity or plasticity.

As the applied load increases, the stress path reaches its limit, called ultimate strength or failure, and
the softening behavior initiates, which means that the stress decreases with increasing strain. Once the
stress path reaches to the failure surface or bounding surface expressed by the failure criterion, the
macro-cracks appear in a body and the strain energy stored starts to dissipate, and at the same time the
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Fig. 1 Strain increments in descending part;
de’=elastic, de”= equivalent viscoplastic.

failure surface also shrinks in size as the softening behavior continues.

If the incremental stress-strain law based on the theory of plasticity is employed to describe the
softening behaviors, the explicit constitutive equation have been formulated by using the tension
softening and fracture concept from which the negative crack moduli are obtained.

However, in this study the viscoplastic constitutive equation is utilized to describe the softening
behavior of concrete by adjusting the equivalent viscoplastic strain increments. Considering the
descending parts of stress-strain curves in Fig. 1, it may be possible to speculate that the actual or total
strain increment is less than the equivalent viscoplastic strain increment, because the elastic increment
which may be obtained from the unloading path is not contained in the actual strain increment. As a
result, the softening behavior can be described by increasing the viscoplastic strain rate as long as strain
increases. The reason will be explained in detail.

The proposed expression has been implemented in the finite element analysis program and evaluated
by simulating the uniaxial, biaxial and triaxial behaviors of concrete blocks subjected to the imposed
displacements on boundaries displacement control.

STRESS-STRAIN RELATIONS

It is difficult to simulate the behavior of concrete up to failure under various loading conditions.
Herein, the theory of viscoplasticity and the two surfaces theory are employed to attempt this task. The
simulations are carried out in three regions in stress space, which correspond to the linear, nonlinear
and descending behaviors. Three regions can be determined by two surfaces, the yield and bounding
failure surfaces.

Inside the yield surface, i.e. in the elastic region, concrete behavior can be described by the theory
of linear elasticity, because micro-cracking and the resulting strains are relatively small, and concrete can
be assumed to have negligible viscous properties.

Elastic strains are completely reversible under unloading and reloading conditions and obey Hooke’s
law,
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where S;=o0;-8;0, is the deviatoric stress tensor, g, = -‘% is the hydrostatic stress, and G, E and »

are the shear modulus, elastic modulus and Poisson’s ratio, respectively.

If a stress path passes through the yield surface but has not yet reached the failure surface, the state
of stress is in the viscoplastic region, and viscoplastic straining occurs. In this region, cracks are not
ignored and are represented by a viscoplastic strain. In this case, considering material non-linearity only,
the total strain can be decomposed into two parts as
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in which ¢ is the elastic strain tensor of Eq.(1), and 2 is the viscoplastic strain tensor. The
viscoplastic strains are the result of both viscous and plastic behavior.

Failure is initiated once the stress path reaches the failure surface, and then strains due to cracks
are taken into account. In the smeared crack model, the softening behavior of concrete structure has
been numerically analyzed with the consideration of crack modulus according to fracture mechanics
concepts.

Instead of that, one assumes that the softening or descending behavior can be simulated by activating
the viscoplastic straining more in the post-peak region, and then the viscoplastic strain increments are
assumed to be greater than the actual strain increments, resulting stress decrements against strain
increments.

Viscoplastic Straining
The viscoplastic strain rate is expressed in its most general form as

ed= (o ) ©))

With the introduction of the potential concept, a specific form of Eq.(3) due to Perzyna (Perzyna, 1966)
retains wide generality for material description, but at the same time defines the viscoplastic strain rate
in the same form as employed in the conventional plasticity theory,
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in which the notation < > indicates that viscoplastic straining occurs only for the yield function ¥>0,
and y is a fluidity parameter. The fluidity parameter can be considered to be inversely proportional to
the viscosity of material. Accordingly, at the same stress level, the viscoplastic strain rates of soft
materials are generally greater than those of hard materials, and also the viscoplastic strain rate increases
with increasing stress level. The scalar function @ can be interpreted as a viscoplastic potential which
plays the same role as the flow potential in fluid flow (Kim, 1993).

Substitution of the chosen yield function into Eq.(4) for the associated flow rule gives

Lo Yy
7= o 2L ©)

or in matrix form,
e?=TIo ©)

where 7 < @(Y)> is absorbed in the matrix.
The relationship between stress and strain can be derived by approximating the viscoplastic strain
rate. The viscoplastic strain increment during the time step ¢, can be expressed in the form,
de?=] (1-)ed +aed] 2, ; 0<a<] @

where o is a parameter that influences the integration accuracy and stability. Eq.(7) represents an
explicit, explicit/implicit, or implicit integration scheme for o=0, 0<e<1, and a=1, respectively.

The major factor that relates to the viscoplastic deformation is the state of stress. Then the
viscoplastic strain rate at time ¢,,, can be approximated by the first terms of a Taylor series expansion

Lot
%) 2o ®
Substituting Eq.(8) into Eq.(7), the viscoplastic stain increment can be formulated by the variables at the
current time station as

e = [ ey a( 8;’;’ )"Aa,.] at, 9)

e=ete

The stress increment vector Jdo is related to the elastic strain increment vector Je* through the
elastic stiffness matrix D* as

do= D°4e¢ (10
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where
4e® = ds — 4™ an

Substituting Egs. (9) and (11) into Eq.(10), we may obtain the relationship between the incremental
stress and the incremental strain :

do= D*(de—e™4) 12
where
. -1
D==(( D) " +a2E" 4) (13)

The stress increment is expressed in terms of the strain increment, time step length, viscoplastic strain
rate and state of stress, and thus the relation would be suitable for the rate dependent materials such as
concrete and rock. Although Eq.(13) does not have the common form of stress-strain relationships for
either linear elastic or plastic material, the implicit time integration scheme can be applicable by treating
the term containing Jre® as a pseudo-load.

Softening Bchavior
After the stress path reaches the bounding failure surface, the softening behavior starts and stress

decreases even when strain increases. In the finite element analysis of concrete structures, the softening
behaviors have been represented by two types of cracking. One is the discrete representation of cracks
and the other is the smeared cracking model (Comi et al., 1992). In the discrete model, the major
shortcoming for implementing in the finite element program are the change of connectivities and the
constraint on the direction of crack propagation. For the distributed fracture, the smeared crack models
have been widely used. This approach treats the cracked material as an equivalent continuum.

Although the smeared crack models have been widely used in analyzing the softening behavior of
concrete structures, they may mnot cover the various loading conditions because of the lack of
representative constitutive models and of the spurious mesh-size sensitivity relating to the fracture energy
concept. '

For a plastic material, the incremental stress-strain law can be written in the form,

do= D’de
where D’ is the plastic moduli matrix. This constitutive equation means that stress increases with
increasing strain up to its peak and that at peak, the tangent moduli matrix D’ becomes a null matrix
because stress increments are zero for finite strain increments. The null moduli matrix can be obtained
from crack moduli matrix.

In Fig. 1, point 1 on the descending part of stress-strain curve moves to point A when strain
increases, while it moves to B in case of unloading. The total strain increment is the sum of elastic
and inelastic strain increments and the unloading curve can be used to determine the elastic strain
increment. It is clear that the actual strain increment does not contain the elastic increment during
descending behavior. Hence, one can speculate that the actual strain increment is less than the nonlinear
and irmreversible smrain increment. Then the descending behavior can be described by the viscoplastic
constitutive equation Eq(12) as

do= D (de—¢& ")

The ascending and descending parts can be described by

N >0 ; for ascending
{del-1e®40 {=0 ; at ultimate stress point
<0 ; for descending

This expression indicates that in the viscoplastic region, the equivalent viscoplastic strain increment
&™4t increases with increasing stress level and that in the post-peak region, &”4f continues to increase.
In a word, the equivalent viscoplastic strain increment increases as long as strain increase.

Therefore, it is possible to numerically simulate not only the hardening behavior but also the
softening behavior of concrete structures by the application of a viscoplastic theory alone, without a
cracking model.
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EQUATIONS OF MOTION

For the numerical solution of an elastic-viscoplastic problem, both explicit and implicit time
integration schemes can be employed to integrate the rate dependent constitutive equations. The
equations of motion in the finite element system have been formulated by applying the principle of
virtual work and the constitutive equations in semi-discrete form (Moran, 1987) as

MX+CX= F*~ F™ 14
where M and C are the global mass and damping matrices,

M =pr NT NdV
c =fVcNTNdv

and F™ and F™ denote the externally applied load vector and the internally resisting nodal force
vector as

Fo = [ NTTqA+ [ NTiav
F* = [ BTaav

N and B are the matrices of interpolation functions and their derivatives, respectively.

In some cases the excitation is caused by prescribed displacement at the supports or boundaries of
the structure. The column matrix of displacement X then can be partitioned into the prescribed
displacements X, and the displacements of remaining nodes X, giving

={ Xt
% ( Xn)
Partition of Eq. (14) in a similar manner gives
M n M IB x 1 + C n C iB X t
( My MBB)( XB) ( Ca CBB)( XB) s)

_ F Iﬂ’] _ F [rl
F ;tl F énl
Usually there are no external loads applied to the interior of a structure, F®™ =0, and the external loads
applied at the prescribed nodes are not well determined.

Separating out Eq. (15) corresponding to the internal nodal points gives
My X+ Cy Xy=~F ™ -MpXs-CpXs (16)

Since the prescribed displacements, Xj, are given by the right hand side can be calculated.

Integration of equations of motion (16) is performed by means of the explicit central difference
scheme which can be considered as a special case of the well-known Newmark family of algorithms.
When the explicit integration scheme is employed, the lumped mass matrix in general could be enough
to appropriately estimate the dynamic behavior of structures. However, in this study, the consistent mass
matrix must be computed because M is used to calculate the load vector in Eq.(16).

The essential feature of any time integration scheme is the approximation of the velocity and
acceleration by difference equations in time. For the Newmark family of algorithms, the difference
equations are given by

X =Xov X ot + GE(U-20 X, +28% 001} an

x n+} Xn“f‘ﬁt[ (1'_7])Xn+7}x n*!]
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with the initial conditions, X, andX,. The acceleration X,,, are obtained from the solution of
Eq.(16), and the velocity X ., and displacement X,., are computed through Eq. (17). The parameters
B and p determine the stability and accuracy of solutions. The central difference scheme is obtained by

setting g=0 and ;;=-2L.

NUMERICAL SIMULATION

The formulations, constitutive model and the equation of motion, developed in the preceding sections
have been implemented in the finite element program to simulate the behavior of concrete structures
under the triaxial stress states. In this section, a procedure of the computer implementation will be
described, followed by numerical examples. The solutions will be compared with recorded responses of
a few selected laboratory experiments, in order to demonstrate the applicability of the formulations
developed herein.

Computer Implementation
The essential steps outlining the implementation of the solution processes can be summarized as

follows. Solution to the problem must begin from the known initial conditions at t=0. At this moment,
the displacements, velocities and stresses (or strains) are known, but the viscoplastic strains do not exist
in the structure. The solution flow adopted is as follows;

1. Initial conditions (n=0) ; X,. X,
At first, stresses or strains are obtained, and then solve for the accelerations of intemnal nodes at

t=0 wsing Eq.(16) as
Xo=M;'(=Fo~CuXo-MpX(—-CgXo)

2. Using the central difference method, compute the displacements in Eq.(17) at the n+1" time
station.
3. Compute strains and viscoplastic strain-rate if viscoplastic straining occurs
& = %‘(ui.i*"i.i)
ay

o ay
7 =YD P

4. Compute stress increment and update stresses
4o = D™(Js— ™4l
Ousy =0,+4do

where the moduli matrix D* depends on the corresponding behavior.
5. Compute the internally resisting force vector

Fina= j;,BTUnn av

6. Calculate the displacements of controlled nodes
Xoer= Xp+aX"

and their velocities X[,, and accelerations X7, and compute the associated load in Eq.(16).
7. Solve Eq. (16) for accelerations of internal nodes, and then calculate their velocities from Eq. (17).

8. If n+1 is less than the total number of steps N, go to 2. Otherwise stop.
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Numerical Results

A constitutive model developed in this study has been implemented in the finite element analysis
program. In order to validate the model, the behaviors of concrete under uniaxial, biaxial and triaxial
states of loadings have been simulated by imposing the prescribed displacements to the finite element
model as shown in Fig. 2. The material data are given as follows; _

Young’s Modulus E=25,357 MPa Compressive strength f .=27.9 MPa

Tensile strength  f,=2.8 MPa Biaxial strength ficlf .=1.16

The five parameters model of Willam-Wamke (Willam and Warnke, 1974) that is based on five
experimental data points which uniquely define the meridional and deviatoric planes are chosen to
describe the behavior of concrete. From that the yield function is formulated according to the isotropic
hardening rule.

Fig. 2 The finite element model of concrete brick
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Fig.3 Uniaxial compressive stress-strain curves under the displacement
imposed in the z-direction; e,=volumetric strain.

An uniaxial compressive stress-strain  behavior is simulated by the monotonically imposed
displacement in the z-direction, and the result is shown in Fig. 3. The figure shows a uniaxial
compressive stress-strain curve( ¢, —¢_,), and the lateral and volumetric strains versus stress o,. The
lateral strains are ¢, and ¢,,, and the volumetric strain is ¢, The uniaxial stress-strain curve, 0, —¢,,
reproduces well the conventional compressive stress-strain curve, but the descending part of g, —e¢.,
curve does not approximate as well as the ascending part. Also, the stress vs. the volumetric strain
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curve, o, —¢, shows the effects of dilatation well. Hence, it is possible to analyze the softening
behavior not only on the material level but also on the structural level by adjusting the amount of the
equivalent viscoplastic strain increment to the proper measure such as stress level.
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Fig. 4 Cyclic response enveloped by a monotonic curve

A cyclic displacement is imposed on the upper face of the model to investigate the behaviors of
unloading and reloading in both of ascending and descending parts. The cyclic stress-strain response is
enveloped by the monotonic curve in Fig. 4. The response during ascending is well reproduced, but the
descending part does not approximate the cyclic behavior. As expected, the energy dissipation during
ascending does not occur because the unloading and reloading are assumed to be linear elastic. The
responses corresponding to reloading are greater than the monotonic responses. This result may be
attributed to the effects of stress wave or inertia.

40 —

Eyy £22

stress(MPa)
[
S
i

POy — S S —
-0.004 -0.002 0 0002 0.004

strain

Fig. 5 Biaxial curves; 6,,/0,/0..=0/1/1

When the uniform displacements are imposed at the nodes on the upper surface of the model,
stresses at integration points in the static analysis should be same, but stresses in this analysis are not
same due to the effect of inertia or stress wave. Biaxial and triaxial stress-strain curves are shown in
Figs. 5 and 6, respectively. From these results, it is realized that the three-dimensional softening
behavior of concrete structures can be reproduced by the viscoplastic constitutive equation with the
assumption that the equivalent viscoplastic strain increments in the post-peak region are greater than the
actual strain increments,
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Fig. 6 Triaxial behaviors of elements S, 14, 24;
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CONCLUSIONS

The softening of concrete has been reproduced by expanding viscoplastic region to failure and by
assuming that the equivalent strain increment in the post-peak region is greater than the actual strain
increment. Considering the simulated results under various loading conditions, it is felt that the model
developed herein predicts the response of concrete structures with a degree of accuracy which is
sufficient for practical purposes.
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