• Title/Summary/Keyword: Micro cracks

Search Result 384, Processing Time 0.019 seconds

Characterization of the brittleness of hard rock at different temperatures using uniaxial compression tests

  • Chen, Guoqing;Li, Tianbin;Wang, Wei;Guo, Fan;Yin, Hongyu
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-77
    • /
    • 2017
  • The failure mechanism of a deep hard rock tunnel under high geostress and high geothermalactivity is extremely complex. Uniaxial compression tests of granite at different temperatures were conducted. The complete stress-strain curves, mechanical parameters and macroscopic failure types of the rock were analyzed in detail. The brittleness index, which represents the possibility of a severe brittleness hazard, is proposed in this paperby comparing the peak stress and the expansion stress. The results show that the temperature range from 20 to $60^{\circ}C$ is able to aggravate the brittle failure of hard rock based on the brittleness index. The closure of internal micro cracks by thermal stress can improve the strength of hard rock and the storage capacity of elastic strain energy. The failure mode ofthe samples changes from shear failure to tensile failure as the temperature increases. In conclusion, the brittle failure mechanism of hard rock under the action of thermal coupling is revealed, and the analysis result offers significant guidance for deep buried tunnels at high temperatures and under high geostress.

An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.186-199
    • /
    • 2005
  • A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

Influence of Electrical Conductivity of Dielectric on Machinability of W-EDM (방전액의 전도율이 와이어방전가공성에 미치는 영향)

  • Kim, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.322-328
    • /
    • 2002
  • In wire-electrical discharge machining (W-EDM), the dielectric plays an important role as the working fluid. It affects the material removal rate and the properties of the machined surface. This paper deals with the effects of the electrical conductivity of dielectric and cobalt percentage of sintered carbides on the machining characteristics and the machined surface integrities with deionized water as dielectric. A series of experiments have been performed on sintered carbides having different cobalt contents. Experimental results show that a higher cobalt content of WC decreases the metal removal rate and worsens the surface quality. Lower electrical conductivity of the dielectric results in a higher metal removal rate as the gap between wire electrode and workpiece reduced. Especially, the surface integrities of rough-cut workpiece, wire electrode, and debris were analyzed also through scanning electron microscopy(SEM) and surface roughness tester. By energy dispersive spectrometry(EDS), it is confirmed that micro cracks and some of electrode material are found on the workpiece surface.

A QUANTITATIVE ANALYSIS OF THE IN VIVO AMALGAM CORROSION PRODUCTS (Amalgam 부식산물의 정성분석에 관한 연구)

  • Lim, Byong-Mok;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.2
    • /
    • pp.1-17
    • /
    • 1991
  • The purpose of this study was to analyze the in vivo amalgam corrosion products qualitatively. 30 molars with large, intact amalgam restorations were selected. All the restorations were more than 5 years old. Twenty of the removed amalgams were embedded in acrylic resin block. The exposed surfaces of fifteen embedded amalgams were polished by amalgam polishing kit, and the rest were observed without polishing. The remaining 10 amalgams were fractured centrally and perpendiculary to the occlusal surface with a wire-cutter. After all specimens were cleaned ultrasonically in distilled water, each surface was examined under S.E.M. and E.D.A.X. (Energy Dispersive Micro X-ray Analyzer) to determine the morphology and chemical nature of the corrosion products. The following results were obtained: 1. The surfaces of the unpolished amalgam restorations were covered with thin amorphous layer of Sn-Ca-P-S complex with numerous cracks. 2. In the conventional amalgams, the major corrosion products were Sn-Cl phases however, tin oxide phases were also observed. 3. Only tin oxide phase was identified in the high copper amalgam, but it was less frequently observed than in the conventional amalgam. 4. It was easier to observe the corrosion product morphology in the fractured surfaces than in the polished ones. The morphologies of the corrosion product crystals looked like a stack of slightly bended plates in the Sn-Cl phases and polyhedra or polygonal prisms in the tin oxide phases.

  • PDF

Nondestructive Evaluation of Thermal Shock Damage for Alumina Ceramics (알루미나 세라믹에 대한 열충격 손상의 비파괴적 평가)

  • Lee, Jun-Hyeon;Lee, Jin-Gyeong;Song, Sang-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1189-1196
    • /
    • 2001
  • The objective of this paper is to investigate the applicability of acoustic emission(AE) technique to monitor the progress of the thermal shock damage on alumina ceramic. For this purpose, alumina ceramic specimen was heated in the furnace and then was quenched in the water tank. When the specimen was quenched in the water tank, complex AE signals due to the initiation of micro-cracks and boiling effect were generated by the progress of thermal shock damage. These mixed AE signals have to be classified for monitoring the degree of the thermal shock damage of alumina ceramics. In this paper, the mixed AE signals generated from both the boiling effect and the crack initiation under thermal shock test was analyzed. The characteristics of AE signals were also discussed by considering the variation of bending strength and Yongs modulus of specimens.

Fracture Analysis of Porous Titanium for Dental Implant Fabricated by Space Holder Process (Space holder 공정으로 제조된 치과 임플란트용 타이타늄 다공체의 파손 분석)

  • Lee, Seung-Mi;Jang, Jin-Man;Lee, Won-Sik;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2016
  • Purpose: The purpose of this study is to analyze fracture behavior and failure mechanism of porous titanium for dental implant fabricated by space holder process. Method: Three porous titanium specimens with a specific volume fraction of open pore were test by 3 point bending and compression stress condition, respectively. Fracture appearance was observed by scanning electron microscope and discussed in relation with oxygen content. Results: For compression-tested specimens, two specimen showed brittle failure, while the other one showed normal failure after deformation. High oxygen content was detected in the brittle-fractured specimen. Several micro-cracks initiated at the struts propagated down to the bottom of the specimen resulting in normal failure. Conclusion: Oxygen contamination during the fabrication process can leads brittle premature failure, and hence quality problem of the porous titanium for dental implant.

Two-dimensional water seepage monitoring in concrete structures using smart aggregates

  • Zou, Dujian;Li, Weijie;Liu, Tiejun;Teng, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2018
  • The presence of water inside concrete structures is an essential condition for the deterioration of the structures. The free water in the concrete pores and micro-cracks is the culprit for the durability related problems, such as alkali-aggregate reaction, carbonation, freeze-thaw damage, and corrosion of steel reinforcement. To ensure the integrity and safe operation of the concrete structures, it is very important to monitor water seepage inside the concrete. This paper presents the experimental investigation of water seepage monitoring in a concrete slab using piezoelectric-based smart aggregates. In the experimental setup, an $800mm{\times}800mm{\times}100mm$ concrete slab was fabricated with 15 SAs distributed inside the slab. The water seepage process was monitored through interrogating the SA pairs. In each SA pair, one SA was used as actuator to emit harmonic sine wave, and the other was used as sensor to receive the transmitted stress wave. The amplitudes of the received signals were able to indicate the water seepage process inside the concrete slab.

Numerical Simulation for Characteristics of Rock Strength and Deformation Using Grain-Based Distinct Element Model (입자 기반 개별요소모델을 통한 암석의 강도 및 변형 특성 모사)

  • Park, Jung-Wook;Lee, Yun-Su;Park, Chan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.24 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • The present study introduces a numerical technique to simulate the mechanical behavior of brittle rock, based on a grain-based model combined with Universal Distinct Element Code (GBM-UDEC). Using the technique, the microstructure of rock sample was represented as an assembly of deformable polygonal grains, and the failure process with the evolution of micro tensile cracks under compression was examined. In terms of the characteristics of strength and deformation, the behaviors of the simulated model showed good agreement with the observations in the laboratory-scale experiments of rock.

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

A development of fabrication processes of microstructure using SU-8 PR (SU-8 PR을 이용한 마이크로 구조물 제작 공정 개발)

  • 김창교;장석원;노일호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.68-72
    • /
    • 2003
  • In this paper, we developed a new thick photoresist fabrication technology for 3-dimensional microstructures. In general, like as AZ photoresist was coated with thin film thickness about 1 $\mu\textrm{m}$ to 30 $\mu\textrm{m}$, but photoresist like SU-8 has thickness of several tens $\mu\textrm{m}$ or more and high aspect ratio. When we fabricate a microstructure using the thick photoresist like SU-8, cracks on the SU-8 thick photoresist are appeared by stress which was caused by sudden cooling down during bake of the thick photoresist spun on wafer. Thus, it was hard to fabricate the microstructure using the thick photoresist for electroplating. In this paper, we developed a new process to produce a 3-dimensional microstructure without the crack by stress through a suitable thick photoresist coating, time control of cool down and time control of PEB (Post Expose Bake).