An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail (Department of Textile Engineering, Faculty of Engineering, Erciyes University)
  • Published : 2005.09.01

Abstract

A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

Keywords

References

  1. D. A. Jarvis, I. J. Hutchinson, D. I. Bower, and I. M. Ward, Polymer, 21, 41 (1980) https://doi.org/10.1016/0032-3861(80)90166-4
  2. M. Yazdanian, I. M. Ward, and H. Brody, Polymer, 26, 1779 (1985) https://doi.org/10.1016/0032-3861(85)90003-5
  3. I. M. Ward and M. A. Wilding, Polymer, 18, 327 (1977) https://doi.org/10.1016/0032-3861(77)90077-5
  4. J. Guevremont, A. Ajji, K. C. Cole, and M. M. Dumoulin, Polymer, 36, 3385 (1995) https://doi.org/10.1016/0032-3861(95)99440-6
  5. B. J. Holland and J. N. Hay, Polymer, 43, 1835 (2002) https://doi.org/10.1016/S0032-3861(01)00775-3
  6. N. Everall, D. MacKerron, and D. Winter, Polymer, 43, 4217 (2002) https://doi.org/10.1016/S0032-3861(02)00247-1
  7. Y. Zhang, Y. Lu, Y. Duan, J. Zhang, S. Yan, and D. Shen, J. Polym. Sci.: Polym. Phys., 42, 4440 (2004) https://doi.org/10.1002/polb.20306
  8. Y. Zhang, Y. Lu, S. Yan, and D. Shen, Polymer J., 37, 133 (2005) https://doi.org/10.1295/polymj.37.133
  9. R. A. Hujts and S. M. Paters, Polymer, 35, 3119 (1994) https://doi.org/10.1016/0032-3861(94)90429-4
  10. J. I. Purvis, D. I. Bower, and I. M. Ward, Polymer, 14, 398 (1973) https://doi.org/10.1016/0032-3861(73)90030-X
  11. D. I. Bower and I. M. Ward, Polymer, 23, 645 (1982) https://doi.org/10.1016/0032-3861(82)90044-1
  12. G. Farrow and D. Preston, Brit. Polym. J., 11, 353 (1960) https://doi.org/10.1088/0508-3443/11/8/310
  13. A. M. Hindeleh and D. J. Johnson, Polymer, 19, 27 (1978) https://doi.org/10.1016/0032-3861(78)90167-2
  14. J. K. Keum and H. H. Song, Polymer, 46, 939 (2005) https://doi.org/10.1016/j.polymer.2004.11.004
  15. Y. Miwa, Y. Takahashi, Y. Kitano, and H. Ishida, J. Mol. Struct., 441, 295 (1998) https://doi.org/10.1016/S0022-2860(97)00302-5
  16. Y. Yoshioka, M. Tsuji, Y. Kawahara, and S. Kohjiya, Polymer, 44, 7997 (2003) https://doi.org/10.1016/j.polymer.2003.10.019
  17. I. Karacan, A Taraiya, D. I. Bower, and I. M. Ward, Polymer, 34, 2691 (1993) https://doi.org/10.1016/0032-3861(93)90108-M
  18. I. Karacan, D. I. Bower, and I. M. Ward, Polymer, 35, 3411 (1994) https://doi.org/10.1016/0032-3861(94)90903-2
  19. A. M. Hindeleh, D. J. Johnson, and P. E. Montague in 'Fiber Diffraction Methods', ACS Symp. No. 141 (A. D. French and K. H. Gardner Eds.), p.149, American Chemical Society, Washington DC, 1983
  20. A. R. Stokes, Proc. Phys. Soc., A166, 283 (1948)
  21. H. de Vries, Colloid & Polym. Sci., 257, 226 (1979) https://doi.org/10.1007/BF01382363
  22. R. de P. Daubeny, C. W. Bunn, and C. J. Brown, Proc. Roy. Soc. (London), A226, 531 (1954)
  23. B. Wunderlich, 'Macromolecular Physics', Vol. 3, pp.68- 69, Academic Press, New York, 1980
  24. A. Demir, Textile Asia, 21, 114 (1990)
  25. Z. D. Jastrzebski in 'Encyclopedia of Polymer Science and Technology', (H. F. Mark, N. G. Gaylord, and N. M. Bikales Eds.), Vol. 2, p.138, Wiley Interscience, New York, 1965