• Title/Summary/Keyword: Micro cement

Search Result 320, Processing Time 0.026 seconds

Evaluation of internal adaptation of dental adhesive restorations using micro-CT

  • Kwon, Oh-Hyun;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • Objectives: The internal adaptation of composite restorations with or without resin modified glass ionomer cement (RMGIC) was analyzed non-destructively using Microcomputed tomography (micro-CT). Materials and Methods: Thirty intact human teeth were used. The specimens were divided into 3 groups. In the control group, the cavities were etched with 10% phosphoric acid for 15 sec. Composite resin was filled into the cavity without adhesive. In group 1, light cured glass ionomer cement (GIC, Fuji II LC, GC) was applied as a base. The cavities were then etched, bonded, light cured and filled with composites. In group 2, the cavities were then etched, bonded, light cured and filled with composites without base application. They were immersed in a 25% silver nitrate solution. Micro-CT was performed before and after mechanical loading. One-way ANOVA with Duncan analysis was used to compare the internal adaptation between the groups before or after loading. A paired t-test was used to compare internal adaptation before and after mechanical loading. All statistical inferences were made within the 95% confidence interval. Results: The silver nitrate solution successfully penetrated into the dentinal tubules from the pulp spaces, and infiltrated into the gap between restoration and pulpal floor. Group 2 showed a lower adaptation than the control group and group 1 (p < 0.05). There was no significant difference between the control group and group 1. For all groups, there was a significant difference between before and after mechanical loading (p < 0.05). Conclusions: The internal adaptation before and after loading was better when composites were bonded to tooth using adhesive than composites based with RMGIC.

Time Evolution of Water Permeability Coefficient of Carbonated Concrete (탄산화된 콘크리트의 투수계수에 대한 시간단계별 해석)

  • Yoon, In-Seok;Lee, Jeong-Yun;Cho, Byung-Young;Kim, Young-Geun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1053-1056
    • /
    • 2008
  • Permeability coefficient of concrete is a substantial key parameter for understanding the durability performance of concrete and its micro-structural densification. Many researches to deal with the issue have been accomplished, however, it is very rare to deal with the theoretical study on permeability coefficient in connection with carbonation of concrete and the effect of volumetric fraction of cement paste or aggregate on the permeability coefficient. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on the permeability coefficient of concrete. The purpose of this study is to establish a fundamental approach to compute the permeability coefficient of (non)carbonated concrete. When simulating micro-structural characteristics as a starting point for deriving a model for the permeability coefficient by the numerical simulation program for cementitious materials, HYMOSTRUC, a more realistic formulation can be achieved. For several compositions of cement pastes, the permeability coefficient is calculated with the analytical formulation, followed by a microstructure-based model. Emphasis is on the micro-structural changes and its effective change of the permeability coefficient of carbonated concrete. The results of micro-structural water permeability coefficient model will be compared with results achieved from permeability experiments.

  • PDF

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 1. Experimental results

  • Gawin, D.;Alonso, C.;Andrade, C.;Majorana, C.E.;Pesavento, F.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.189-202
    • /
    • 2005
  • This paper presents an analysis of some experimental results concerning micro-structural tests, permeability measurements and strain-stress tests of four types of High-Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$). These experimental results, obtained within the "HITECO" research programme are discussed and interpreted in the context of a recently developed mathematical model of hygro-thermal behaviour and degradation of concrete at high temperature, which is briefly presented in the Part 2 paper (Gawin, et al. 2005). Correlations between concrete permeability and porosity micro-structure, as well as between damage and cracks' volume, are found. An approximate decomposition of the thermally induced material damage into two parts, a chemical one related to cement dehydration process, and a thermal one due to micro-cracks' development caused by thermal strains at micro- and meso-scale, is performed. Constitutive relationships describing influence of temperature and material damage upon its intrinsic permeability at high temperature for 4 types of HPC are deduced. In the Part II of this paper (Gawin, et al. 2005) effect of two different damage-permeability coupling formulations on the results of computer simulations concerning hygro-thermo-mechanical performance of concrete wall during standard fire, is numerically analysed.

Bleeding characteristics of coupling materials for installation of acoustic emission (AE) sensor (AE 센서 설치를 위한 커플링 재료의 블리딩 특성)

  • Lee, Jong-Won;Kim, Hyunwoo;Kim, Min-Koan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.635-650
    • /
    • 2017
  • Acoustic emission (AE) sensors have broadly used to monitor the damage of underground structures and tunnels. The reliability of measured signal is determined by the coupling condition of the AE sensors which are embedded in the target underground structure. To secure the reliability of health monitoring results, it is important to understand the characteristics of the coupling materials. In this study, laboratory tests were performed using portland cement, micro cement, and gypsum as coupling materials in order to verify the bleeding characteristics. The effective parameters for bleeding were determined to be water-cement ratio, material type, curing time, and injected volume of coupling materials. As a results of the experimental study, the bleeding rate increases with an increase in a water-cement ratio and an injected volume; for portland cement, water-cement ratio and injected volume effects are larger than the micro cement. However, curing time is not much effective for occurrence of the bleeding phenomenon. It is anticipated that this study may be useful for the selection of suitable coupling materials for installation of acoustic emission sensors.

A Microstructural Analysis for Preventive Treatments of Vertebral Fracture (척추 골절의 예방적 치료법에 관한 미세 구조해석)

  • 김형도;탁계래;김한성;이성재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.146-149
    • /
    • 2002
  • It is reported that the mechanical properties of vertebral trabecular bone depend on the density and the mass of bones. Osteoporosis is a systemic skeletal disease caused by low bone mass and microstructure deterioration of trabecular bone. Silva and Gibson (1997) studied the treatment of age-related bone loss using drug therapy. Vertebroplasty is a minimally invasive surgery for the treatment of osteoporosis vertebrae. This procedure includes puncturing vertebrae and filling with Polymethylmethacrylate (PMMA). However, the relative effect of drug therapy and bone cement for osteoporosis treatment is not reported yet. In this study, several 2D models of human vertebral trabecular bone are analyzed by finite element method. The mechanical behaviors of the vertebral trabecular bone treated by the drug therapy and the bone cement are compared. This study shows that bone cement treatment is more effective strategy than drug therapy to prevent the degradation of bone strength.

  • PDF

Mixing and Compressive Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 비빔 및 압축강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.28-31
    • /
    • 2004
  • This paper discusses the role of micro and macrofibers in the workability, compressive strength, and failure of cementitious composites. Workability(flow), compressive strength, splitting strength and fracture mechanism of hybrid fiber reinforced cement composites(HFRCC) have been investigated by means of Korean Standard (KS). The specific blend pursued in this investigation is a combination of polyvinyl alcohol(PVA) and steel cord. It was demonstrated that a hybrid combination of steel and PVA enhances fiber dispersion compared to only steel cord reinforced cement composites and that the brittle and wide cracking was much reduced in HFRCC as expected because in the matrix containing the PVA fiber around the steel cord, a multiple microcracking occurred and the steel cord could sufficiently work for bridging the cracked surface.

  • PDF

Fundamental Properties of Mortar Utilizing Waste Concrete Power (폐콘크리트 분말을 활용한 모르타르의 기초물성에 관한 연구)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Sung-Su;Kim, Ki-Hyung;Moon, Han-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.620-623
    • /
    • 2004
  • Waste concrete powder(WCP) has been estimated with a great value-added material as by-product of waste concrete manufactured to fine and coarse aggregate for concrete, because it is able to utilized for cement clinker and concrete admixture. In the experimental results for this study, chemical composition of WCP was similar to that of cement, and specific gravity of WCPs were 2.46 and 2.48 due to internal micro-void of WCP. Final setting of paste with WCP was delayed, and flow value of mortar with WCP was tendency to reduced in comparison with that of paste and mortar with only ordinary portland cement as replacement ratio of WCP increased. Furthermore, sorptivity of mortar with WCP was increased as replacement ratio of WCP increased. Compressive strength of mortar with $15\%$ WCP was developed about 27MPa at 28days.

  • PDF

Experimental Study of Flexural Behavior in Flexural Members Based on Repair Thickness of ECC (ECC 재료보강 두께에 따른 휨 부재의 휨 거동에 관한 실험적 연구)

  • Kyoung Min Su;Kim Dong Wan;Bae Byung Won;Jun Kyung Suk;Lim Yun Mook;Kim Jang Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.192-195
    • /
    • 2004
  • Recently, the development of construction materials is rapidly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-mechanics based fiber concrete called Engineered Cement Composite (ECC) is developed and studied extensively by many researchers in the field. Due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan, and European countries) are currently using ECC in actual constructions. In this study, ECC with internationally competitive material capacities is manufactured using domestic materials. Then, unreinforced concrete beams are repaired using ECC with $10\%,\;20\%,\;30\%$ of concrete specimen height Using 4 point bending test, the flexural strength of repaired flexural members are determined. The results show that ECC manufactured with domestic materials can be effectively used for repairing materials.

  • PDF

Evaluation on the Chloride Ion Diffusion of Cement Matrix Replaced with Ground Calcium Carbonate (중질탄산칼슘을 혼합한 시멘트 경화체의 염소이온 확산특성 평가)

  • Jung, Ho-Seop;Lee, Seung-Tae;Kim, Jong-Pil;Park, Kwang-Pil;Kim, Seong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.553-556
    • /
    • 2006
  • Generally, concrete is one of the most widely used construction materials, because of its good durability to cost ratio. However, when subjected to severe environments its durability can significantly decline due to various harmful conditions. In this article, we would like to investigate a chloride ion diffusion of cement matrix with inert filler, which ground calcium carbonate(GCC). For the experimental results of the chloride ion diffusion, as the addition of GCC makes decreasing the permeability by micro-filler effect, the matrix of 5-15% ratio of replacement are superior to the GCC0 mortar matrix with respect to durability of cement matrix in this scope.

  • PDF

Effect of Micro Organic-Inorganic Complex on Hydration of Portland Cement(I) Formation of Interlamella Complex between Montmorillonite and PVA (마이크로 유기-무기 복합체가 포틀랜드 시멘트 수화에 미치는 영향(I) MontmorillonitPVA 층간 화합물의 형성)

  • 김배연;김창은;최진호
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.21-25
    • /
    • 1985
  • For studying the influence of addition of Polyvinyl alcohol (PVA)-montmorillonite complex on the hydration of Portland cement the PVA-montmorillonite derivatives were prepared in advance an characterized system-of Portland cement the PVA-montmorillonite derivatives were prepared in advance and characterized systema-tically. PVA with the polymerizationdegree ranging from 500 to 2000 have been intercalated into the lamellar structure of hydrated montmorillonites which were fractionated under 2㎛ by Stock's rule. In all cases the constant basal spacing of ∼20Å was determined whatever the molecular weight of PVA used. And the carbon chain orientation of PVA in the interfoliar space has been deduced to be parallel with bilayer structure.

  • PDF