• Title/Summary/Keyword: Micro and Nano

Search Result 1,206, Processing Time 0.03 seconds

Fabrication of Viewing Angle Direction Brightness-Enhancement Optical Films using Surface Textured Silicon Wafers

  • Jang, Wongun;Shim, Hamong;Lee, Dong-Kil;Park, Youngsik;Shin, Seong-Seon;Park, Jong-Rak;Lee, Ki Ho;Kim, Insun
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.569-573
    • /
    • 2014
  • We demonstrate a low-cost, superbly efficient way of etching for the nano-, and micro-sized pyramid patterns on (100)-oriented Si wafer surfaces for use as a patterned master. We show a way of producing functional optical films for the viewing angle direction brightness-enhancement of Lambertian LED (light emitting diode)/OLED (organic light emitting diode) planar lighting applications. An optimally formulated KOH (Potassium hydroxide) wet etching process enabled random-positioned, and random size-distributed (within a certain size range) pyramid patterns to be developed over the entire (100) silicon wafer substrates up to 8" and a simple replication process of master patterns onto the PC (poly-carbonate) and PMMA (poly-methyl methacrylate) films were performed. Haze ratio values were measured for several film samples exhibiting excellent values over 90% suitable for LED/OLED lighting purposes. Brightness was also improved by 13~14% toward the viewing angle direction. Computational simulations using LightTools$^{TM}$ were also carried out and turned out to be in strong agreement with experimental data. Finally, we could check the feasibility of fabricating low-cost, large area, high performance optical films for commercialization.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • v.5 no.4
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

Investigation of the Effect of Seaweed Nanofibers in Jute Fiber-reinforced Composites as an Additive (해초 나노섬유가 황마섬유 강화 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.398-403
    • /
    • 2018
  • Recently, environmental pollution caused by plastic waste, ecosystem disturbance of micro-plastics and human body accumulation are becoming big problems. In order to replace the traditional plastic, eco-friendly resin and natural fiber-based composite materials have been developed, but they have a disadvantage that their mechanical properties are significantly lower than those of synthetic fiber-based composites. In this study, eco - friendly nanofiber was extracted from seaweed and used as an additive in order to improve the mechanical properties of jute fiber-reinforced composites. Through the hand lay-up process, the composites were fabricated, and it was confirmed that the nanofiber was effective in improving the mechanical properties of natural fiber composites through tensile, bending and drop weight impact tests.

Characteristic Evaluation of Optically Stimulated Luminescent Dosimeter (OSLD) for Dosimetry (광유도발광선량계(Optically Stimulated Luminescent Dosimeter)의 선량 특성에 관한 고찰)

  • Kim, Jeong-Mi;Jeon, Su-Dong;Back, Geum-Mun;Jo, Young-Pil;Yun, Hwa-Ryong;Kwon, Kyung-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.123-129
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate dosimetric characteristics of Optically stimulated luminescent dosimeters (OSLD) for dosimetry Materials and Methods: InLight/OSL $NanoDot^{TM}$ dosimeters was used including $Inlight^{TM}MicroStar$ Reader, Solid Water Phantom, and Linear accelerator ($TRYLOGY^{(R)}$) OSLDs were placed at a Dmax in a solid water phantom and were irradiated with 100 cGy of 6 MV X-rays. Most irradiations were carried out using an SSD set up 100 cm, $10{\times}10\;cm^2$ field and 300 MU/min. The time dependence were measured at 10 minute intervals. The dose dependence were measured from 50 cGy to 600 cGy. The energy dependence was measured for nominal photon beam energies of 6, 15 MV and electron beam energies of 4-20 MeV. The dose rate dependence were also measured for dose rates of 100-1,000 MU/min. Finally, the PDD was measured by OSLDs and Ion-chamber. Results: The reproducibility of OSLD according to the Time flow was evaluated within ${\pm}2.5%$. The result of Linearity of OSLD, the dose was increased linearly up to about the 300 cGy and increased supralinearly above the 300 cGy. Energy and dose rate dependence of the response of OSL detectors were evaluated within ${\pm}2%$ and ${\pm}3%$. $PDD_{10}$ and PDD20 which were measured by OSLD was 66.7%, 38.4% and $PDD_{10}$ and $PDD_{20}$ which were measured by Ion-chamber was 66.6%, 38.3% Conclusion: As a result of analyzing characteration of OSLD, OSLD was evaluated within ${\pm}3%$ according to the change of the time, enregy and dose rate. The $PDD_{10}$ and $PDD_{20}$ are measured by OSLD and ion-chamber were evaluated within 0.3%. The OSL response is linear with a dose in the range 50~300 cGy. It was possible to repeat measurement many times and progress of the measurement of reading is easy. So the stability of the system and linear dose response relationship make it a good for dosimetry.

  • PDF

Pore Gradient Nickel-Copper Nanostructured Foam Electrode (기공 경사화된 나노 구조의 니켈-구리 거품 전극)

  • Choi, Woo-Sung;Shin, Heon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.270-276
    • /
    • 2010
  • Nickel-copper foam electrodes with pore gradient micro framework and nano-ramified wall have been prepared by using an electrochemical deposition process. Growth habit of nickel-copper co-deposits was quite different from that of pure nickel deposit. In particular, the ramified structure of the individual particles was getting clear with chloride ion content in the electrolyte. The ratio of nickel to copper in the deposits decreased with the distance away from the substrate and the more chloride ions in the electrolyte led to the more nickel content throughout the deposits. Compositional analysis for the cross section of a ramified branch, together with tactical selective copper etching, proved that the copper content increased with approaching central region of the cross section. Such a composition gradient actually disappeared after heat treatment. It is anticipated that the pore gradient nickel-copper nanostructured foams presented in this work might be a promising option for the high-performance electrode in functional electrochemical devices.

Synthesis of the Carbon Nano/micro Coils Applicable to the Catalyst Support to Hold the Tiny Catalyst Grain (매우 작은 크기의 촉매 알갱이를 지지하기 위한 촉매 지지대용 탄소 나노/마이크로 코일의 합성)

  • Park, Chan-Ho;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.277-284
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. The Ni layer on the $SiO_2$ substrate was used as a catalyst for the formation of the carbon coils. The characteristics (formation densities, morphologies, and geometries) of the as-grown carbon coils on the substrate with or without the $H_2$ plasma pretreatment process were investigated. By the relatively short time (1 minute) $H_2$ plasma pretreatment on the Ni catalyst layered-substrate prior to the carbon coils synthesis reaction, the dominant formation of the carbon microcoils on the substrate could be achieved. After the relatively long time (30 minutes) $H_2$ plasma pretreatment process, on the other hand, we could obtain the noble-shaped geometrical nanostructures, namely the formation of the numerous carbon nanocoils along the growth of the carbon microcoils. This noble-shaped geometrical nanostructure seemed to play a promising role as the good catalyst support for holding the very tiny Ni catalyst grains.

하이브리드 이산화티탄의 자기조직체 형성공법을 이용하여 제조된 하이브리드 이산화티탄의 자외선차단 상승효과

  • Jo, Hyeon-Dae
    • Ceramist
    • /
    • v.19 no.3
    • /
    • pp.26-35
    • /
    • 2016
  • The purpose of this study is to find the optimum conditions for manufacturing titanium dioxide using a hybrid self-assembly forming method, to confirm the shape, properties and synergy effect of UV protection for hybrid titanium dioxide. Hybrid titanium dioxide, manufactured by forming self-assembly of different sizes consisting of two kinds of titanium dioxides, has micro titanium dioxide (250nm~300nm) for support material, Nano titanium dioxide (20~30nm) for surface material, coating support material. Adjustment experiments of $AlCl_3$ concentration and both titanium dioxide ratio were conducted to find the optimized conditions for the surface coating of titanium dioxide striking a negative charge, a sample made of the optimized process was confirmed through an optical analysis, particle size analysis, and potentiometric analysis. The SPF in-vitro value of the cosmetics samples containing hybrid titanium dioxide showed 15~30% higher levels than the cosmetics samples containing both titanium dioxides mixture.

The Effect of Hydrogen on Mechanical Properties of Gas Pipeline Material: I Tensile property (가스배관 재료의 기계적특성에 미치는 수소의 영향: I 인장특성)

  • Kim, Woo-Sik;Jang, Jae-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.67-73
    • /
    • 2011
  • One of the important topics to prepare the up-coming era of so-called ‘hydrogen economy’ is hydrogen transmission. Pipeline is conceivably the most economic way to consistently and safely transport a large amount of hydrogen over a long distance, which may be strongly requested in hydrogen economy era. As a good starting point for the purpose, one might wonder whether conventional API pipeline steels as designed for natural gas transmission can be used as the hydrogen pipeline materials or not. To answer the question, here we performed a series of micro-/nano-indentations together with tensile tests on the hydrogen-charged API X65, X70 and X100 steels having different strength level. In this paper, from the results of tensile tests, the hydrogen effects on the mechanical behavior in the API steels are systematically evaluated.

Synthesis of Pd-decorated SiO2 layers with superhydrophobic and oleophilic micro-nano hierarchical (초소수성 및 친유성을 갖는 마이크로-나노 계층구조의 Pd 금속입자 기능화된 SiO2층 합성)

  • Kim, Jae-Hun;Lee, Jae-Hyeong;Kim, Jin-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.67.2-67.2
    • /
    • 2017
  • 본 연구에서는 $SiO_2$ 미세구조 상에 Pd 나노입자(NPs)를 증착하여, 불소화된 마이크로-나노 계층구조를 갖는 Pd-decorated $SiO_2$($Pd/SiO_2$)를 제작하였다. 마이크로 크기의 거칠기를 갖는 $SiO_2$ 층은 졸-겔 공정을 사용해서 제조된 용액을 전기분사함으로써 제조되었다. 이어서, 자외선(UV)을 이용한 광 환원법을 이용해 Pd 나노입자를 $SiO_2$ 층에 형성했다. 생성된 표면은 마이크로-나노의 계층구조 형태를 보여주었다. 해당 시편의 불소화 처리 후, 마이크로-나노의 계층구조 표면은 $170^{\circ}$ 이상의 물 접촉각(water contact angle; WCA) 및 $5^{\circ}$ 이하의 슬라이딩 각(sliding angle)을 보여줌으로써 물에 대해 탁월한 소수성을 나타내었다. 또한, 커피($CA=161^{\circ}$), 우유($CA=162^{\circ}$), 쥬스($CA=163^{\circ}$), 그리고 글리세롤($CA=165^{\circ}$)에 대해서도 우수한 소수 특성을 보여주었다. 또한, 이들 $Pd/SiO_2$ 층은 우수한 장기내구성 및 자외선 저항성을 보여주었다. 그리고 이어진 기름에 대한 접촉각 측정을 통해 해당 시편이 소유 특성이 아닌 친유 특성을 보여준다는 것을 확인할 수 있었고, 기름에 대한 CA는 약 ${\sim}10^{\circ}$로 매우 우수한 친유 특성을 나타내었다. 이와 같은 결과는 자체세정이 가능한 표면 및 지능형 물/기름 분리 시스템과 같은 스마트 장치에서 초소수성-친유성 특성을 갖는 계층구조의 $Pd/SiO_2$ 층을 사용할 가능성을 명확하게 보여준다고 판단된다.

  • PDF

A Stress-Based Gradient Elasticity in the Smoothed Finite Element Framework (평활화 유한요소법을 도입한 응력기반 구배 탄성론)

  • Changkye Lee;Sundararajan Natarajan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2024
  • This paper presents two-dimensional boundary value problems of the stress-based gradient elasticity within the smoothed finite element method (S-FEM) framework. Gradient elasticity is introduced to address the limitations of classical elasticity, particularly its struggle to capture size-dependent mechanical behavior at the micro/nano scale. The Ru-Aifantis theorem is employed to overcome the challenges of high-order differential equations in gradient elasticity. This theorem effectively splits the original equation into two solvable second-order differential equations, enabling its incorporation into the S-FEM framework. The present method utilizes a staggered scheme to solve the boundary value problems. This approach efficiently separates the calculation of the local displacement field (obtained over each smoothing domain) from the non-local stress field (computed element-wise). A series of numerical tests are conducted to investigate the influence of the internal length scale, a key parameter in gradient elasticity. The results demonstrate the effectiveness of the proposed approach in smoothing stress concentrations typically observed at crack tips and dislocation lines.