• 제목/요약/키워드: Micro Real-Time Control System

검색결과 97건 처리시간 0.034초

Web-based Servo Motor Controller Design with Real-time Micro Embedded Operating System

  • Kim, Ga-Gue;Lee, Hyung-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1655-1658
    • /
    • 2004
  • In this paper, we design and implement remote servo motor control system with real-time micro embedded operating system. The system, where controller and camera image grabber are mounted, handles control commands transmitted from a remote PC web browser. A hard real-time servo motor driver running on the real-time micro embedded OS and then a digital control application which confirms precise sampling time intervals is constructed. Frame grabber images transmitted from camera are saved in a image data format to view on remote PC web browser.

  • PDF

마이크로 커널을 이용한 2축 반송 테이블의 분산제어 (Distributed Control of a Two Axis Convey Table Using Real-time Micro-Kernel)

  • 이건영
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.182-187
    • /
    • 2004
  • In this paper, we propose a PC based distributed controller for a two axis convey table using real-time micro-kernel. PC, Windows program, gives an easy way to implement wealthy GUI and micro-kernel, ${\mu}$C/OS-II, provides a real-time capability to control devices. We built a real-time distributed control system using ${\mu}$C/OS-II kernel which needs to process the tasks for two motors within the desired time to synchronize the motion. We used both semaphore and message mail box for synchronization. Unlike the previous study where we used step motors for the actuator of two axes convey table, we rebuilt the convey table with DC motors and the dedicated position servo which had built in out lab, and then we implemented a realtime distributed control system by putting the micro-kernel into between PC and position servo. Moreover we developed the PC based graphic user interfaces for generating planar drawing image control. Experimental results also presented to show the Proposed control system is useful.

CAN과 RTOS를 내장한 소형 실시간 시스템 설계 기법 (Design Scheme of A Micro Real-Time Control System with CAN and RTOS)

  • 임영규;김동성
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.207-215
    • /
    • 2014
  • 본 논문은 초소형 센서노드(이하 노드)에서 인터럽트 처리와 데이터 전송에 대한 지연에 대한 문제들을 해결하기 위해 Micro Real-Time Control System (MRTCS)을 제안한다. MRTCS은 제어노드와 Controller Area Network (CAN) 기반의 노드로 구성되어졌다. 제어노드는 소형 마이크로 제어기 (sMCU)에 Real-Time Operating System (RTOS)를 내장하여 설계하였다. 노드들은 sMCU 없는 CAN 기반의 디바이스이며, 다중 디지털 입출력과 CAN 제어기를 가지고 있다. 소형 실시간 시스템 설계를 위해, 오픈소스인 OCTAVE v3.6.4를 이용하여 시스템 성능에 대한 모의실험을 실시하였다. 모의실험을 통해 제안된 설계 기법을 이용할 경우 인터럽트 처리와 데이터 전송에 대한 지연이 감소하여 시스템 성능이 증가함을 알 수 있었다. MRTCS이 다양한 실시간 제어 시스템에 적용 가능함을 검증하였다.

실시간 운영체제를 이용한 내장형 웹서버 시스템 개발 (Development of Embedded Web Server System Using a Real-Time OS)

  • 정명용;문승빈;송상훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.223-223
    • /
    • 2000
  • Embedded system area has brought an innovation and has been spread rapidly by the growth of the Internet, wireless telephony and multimedia recently. Many embedded systems are required to be real-time systems in that it needs multi-tasking and priority based scheduling. This paper introduces a real-time system that was developed with web server ability for control and monitoring system employing a real-time operating system. It discusses the design model, structure, and applications of web server system. We used SNDS100 board which has a 32-bit RISC microcontroller of ARM7TDMI core as a hardware platform. MicroC/OS kernel was used as Real-time operating system that supports a preemptive and multitasking functions. We developed a hierarhchical control and monitoring system that not only reduced system and management costs, but also enhanced reusability and portability.

  • PDF

영광 3,4호기 Foxboro 제어시스템 모델링 및 시뮬레이션 (Modeling and simulation of foxboro control system for YGN#3,4 power plant)

  • 김동욱;이용관;유한성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.179-182
    • /
    • 1997
  • In a training simulator for power plant, operator's action in the MCR(Main Control Room) are given to plant process and computer system model as an inputs, and the same response as in real power plant is provided in real time. Inter-process communication and synchronization are especially important among various inputs. In the plant simulator, to simulate the digital control system such as FOXBORO SPEC-200 Micro control system, modification and adaptation of control card(CCC) and its continuous display station(CDS) is necessary. This paper describes the modeling and simulation of FOXBORO SPEC-200 Micro control system applied to Younggwang nuclear power plant unit #3 & 4, and its integration process to the full-scope replica type training simulator. In a simulator, display station like CDS of FOXBORO SPEC-200 Micro control system is classified as ITI(Intelligent Type Instrument), which has a micro processor inside to process information and the corresponding alphanumeric display, and the stimulation of ITI limits the important functions in a training simulator such as backtrack, replay, freeze and IC reset. Therefore, to achieve the better performance of the simulator, modification of CDS and special firmware is developed to simulate the FOXBORO SPEC-200 Micro control system. Each control function inside control card is modeled and simulated in generic approach to accept the plant data and control parameter conveniently, and debugging algorithms are applied for massive coding developed in short period.

  • PDF

DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현 (Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip)

  • 김용태;정동연;한성현
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF

차량용 전자 제어 시스템에서 비접촉식 자기장 센서와 이중 버퍼 구조를 이용한 필터링 시간 최적화 (Filtering Time Optimization in Vehicle Electronic Control Systems Using a Non-Contact Magnetic Sensor and Dual Buffer Structure)

  • 김민중;박대진
    • 대한임베디드공학회논문지
    • /
    • 제19권4호
    • /
    • pp.203-210
    • /
    • 2024
  • The automotive industry is transitioning from traditional internal combustion engines to systems powered by motors, batteries, and various electronic control units. Central to this shift is the micro-controller unit, which processes data from various sensors for real-time environmental awareness and control. This paper explores using non-contact magnetic sensors for sensing vehicle inclination as part of a digital twin implementation. Unlike optical or contact sensors, non-contact magnetic sensors offer robust performance in challenging environments, providing consistent and reliable data under varying conditions. To optimize real-time data processing, we propose a double buffer structure to enhance digital signal processing performance in embedded systems. Experiments using a custom sensor-integrated board demonstrate that the double buffer structure with direct memory access-enabled serial peripheral interface significantly reduces data processing time and improves noise reduction filtering. Our results show that the proposed system can greatly enhance the reliability and accuracy of sensor data, crucial for real-time vehicle control systems. In particular, by using the double buffer structure proposed in this paper, it was possible to secure 8.27 times more data compared to raw data, despite performing additional filtering. The techniques outlined have potential applications in various fields, offering enhanced monitoring and optimization capabilities, thus paving the way for more advanced and efficient vehicle control technologies.

반자율 무인잠수정을 위한 실시간 제어 아키텍쳐 (A Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle)

  • 이계홍;전봉환;이판묵;홍석원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.198-203
    • /
    • 2004
  • This paper describes a real-time control architecture for DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), which has been developed at Korea Research Institute of Ships & Ocean Engineering (KRISO), KORDI, for being a test-bed oj development of technologies for underwater navigation and manipulator operation. DUSAUV has three built-in computers, seven thrusters for 6 degree of freedom motion control, one 4-function electric manipulator, one pan/tilt unit for camera, one ballasting motor, built-in power source, and various sensors such as IMU, DVL, sonar, and so on. A supervisor control system for GUI and manipulator operation is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers of vehicle for real-time control purpose, while MicroSoft OS product is ported on the supervisor system for GUI programming convenience. A hierarchical control architecture which consist of three layers (application layer, real-time layer, and physical layer) has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in a basin of KRISO is also provided.

  • PDF

소형 이동 로봇의 실시간 경로계획과 영상정보에 의한 추적제어 (A study on real-time path planning and visual tracking of the micro mobile robot)

  • 김은희;오준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.25-29
    • /
    • 1997
  • In this thesis, we construct the microrobot succor system and navigate the real-time path planning and visual tracking of each robot. The system consists robots, vision system and a host computer. Because the robots are free-ranging mobile robot, it is needed to make and gallow the path. The path is planned and controlled by a host computer, ie. Supervisory control system. In path planning, we suggest a cost function which consists of three terms. One is the smoothness of the path, another is the total distance or time, and the last one is to avoid obstacles. To minimize the cost function, we choose the parametric cubic spline and update the coefficients in real time. We perform the simulation for the path planing and obstacle avoidance and real experiment for visual tracking

  • PDF

TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계 (The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip)

  • 하석흥
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF