
ICCAS2004 August 25-27, The Shangri-La Hotel, Bangkok, THAILAND

1. INTRODUCTION

Intelligence appliances will become the core of home
appliance industries in the digital area. Especially, more and
more people are getting interested in controlling intelligence
appliances and monitor their status using a web browser in
real-time through the Internet. All the above things require a
communication protocol called TCP/IP. Even a small
appliance should be provided with TCP/IP to communicate
through the Internet. Unfortunately, legacy TCP/IP stacks are
too heavy to be applied to small appliances that have relatively
small memory and low computing power. So it is required to
design and implement a TCP/IP stack which is light-weighted
enough to be embedded in small appliances[1-5].

 In this paper, we attempted to design and implement micro
TCP/IP for small intelligence appliances on Qplus real-time
operating system[7]. For this goal, we investigated the
properties of intelligence appliances, operating systems and
requirements needed to connect to the Internet, first. Next, we
analyzed the structure and core concept of the BSD based
TCP/IP, which are used by QPlus networking module. Based
on these investigations, we developed a micro TCP/IP stack
that required code size of 38Kbytes on QPlus, including
socket API. In comparison with the QPlus network module,
where the code size is 140Kbytes, the implemented micro
TCP/IP stack is small enough to be applied to the intelligence
appliance. In addition, We developed TFTP, DHCP and micro
web server, also based on the implemented micro TCP/IP
stack.

Qplus is developed by ETRI, this technology consists of
reconfigurable embedded Linux kernel, system libraries,
graphic window system, and target builder. The target builder
is a tool for configuring Qplus. Unlike other which allow only
the kernel, this tool will provide the functionality to configure
all the components of Qplus like kernel, system libraries, and
applications. The system libraries also have been optimized to
fit for embedded systems.

2. MICRO TCP/IP

Embedded systems have inherited the programming
practices used in larger systems. Network protocols, and
TCP/IP in particular, incorporate programming practices used
in larger systems. The history of TCP/IP is one of adapting
and modifying the original sources written at the University of
Califonia at Berkeley to embedded systems. The Berkeley
stack is the basis for most of these ports and is the basis of
most of the commercial TCP/IP stacks for embedded systems.

Of course, real-time and embedded systems face many issues
that are unique. A straight port of the Berkeley stack is not the
best implementation for the particular needs of an embedded
and real-time system. Most vendors have modified the
Berkeley code over the years to improve the performance of
the stack in embedded systems. Any ports or modifications of
the original Berkeley sources should address the following
issues[6].

a. Buffer management
The TCP/IP mbuf buffer management should be able to use

pre-allocated buffers rather than allocating them from the
global heap at run time via malloc.

b. Timers
The times used in the protocols for connection management,

timeouts, and retries should be managed by the RTOS. They
should not be a separate implementation that will secretly steal
bandwidth from the CPU or cause concurrency problems.

c. Latency
If an RTOS is present, it should not add any additional

latency. Interrupt-handling interfaces should be fast and
deterministic. The RTOS should not add any latency to the
interrupt processing required with the physical transmission
and reception of a frame. The large amount of context
switches and CPU processing required in dealing with a
packet increases the importance of using an OS with minimal
thread context switch time.

d. Concurrency
All buffering mechanisms should have semaphore

protection to allow higher performance potential in real-time
systems. The first TCP/IP protocol implementations were on
Unix systems and depended on manipulating hardware
interrupt levels to eliminate resource contention problems.
Semaphore protection should be available to the timers to
reduce concurrency problems.

e. Minimized data copying
The TCP/IP implementation should minimize the amount of

data copying. The data within each frame can be maintained in
the same buffer so it doesn’t need to be copied and re-copied
by the CPU at each stage of the protocol. The networking
chip’s DMA places the packets directly in the managed buffer
pool where the packet is passed up through the stack by

Web-based Servo Motor Controller Design

with Real-time Micro Embedded Operating System

Ga-Gue Kim*, and Hyung-Seok Lee*

* Embedded S/W Technology Center, ETRI, Daejeon, Korea
(Tel : +82-42-860-1123; E-mail: ggkim@etri.re.kr, hyslee@etri.re.kr)

Abstract: In this paper, we design and implement remote servo motor control system with real-time micro embedded operating
system. The system, where controller and camera image grabber are mounted, handles control commands transmitted from a
remote PC web browser. A hard real-time servo motor driver running on the real-time micro embedded OS and then a digital
control application which confirms precise sampling time intervals is constructed. Frame grabber images transmitted from camera
are saved in a image data format to view on remote PC web browser.

Keywords: TCP/IP, embedded system, Qplus, web server

1655

manipulating pointers and not by copying data. Also, some
vendors have extended the mbuf mechanism to allow the data
to be shared between mbufs and mblocks where there are
STREAMS protocols also present in the system.

f. Link layer multiplexing
Protocol implementation requires a framework with

mechanisms for queueing and buffer management. Also,
modern protocols require more flexible device driver
interfaces and more flexible multiplexing. This is particularly
true where serial point-to-point protocols such as PPP are now
extended to support IP tunneling and Virtual Private Network
(VPN). The original Berkeley implementation isn’t
sufficiently flexible to meet all of these needs. The better
protocol stack implementations use a framework that allows
the stack to be extended as new protocols and interfaces are
developed. This can be accomplished by extending the basic
Berkeley driver interface scheme, or the protocols can be
rewritten to use a different framework.

g. CPU bandwidth
Each embedded system application has different

requirements for its TCP/IP stack. For example, a TCP/IP
stack in most Internet appliances probably would not be
considered real time. Also, if the network is used for control
and management functions, the hard bandwidth requirements
will be fairly low. On the other hand, if the application is
streaming video or voice, the faster packet rates would qualify
the application as a real-time application.

In this paper, we proceed with modification or addition of
the uC/OS-II TCP/IP stack after its porting on Qplus. During
our porting process, a few conflicts occurred in system calls
part. Therefore, the uC/OS-II system calls was substituted
with ones provided on Qplus as follows.

Table 2.1 Substitution of system calls.
system
calls

Functio
n

uC/OS-II Qplus

create OSSemCreate sema_create
pending OSSemPend sema_wait semaphore
post OSSemPost sema_post

time
get OS
time

OSTimeGet clock_get_time

CS start Splx(1)
IC_IRQ_DISA
BLE mutual

exclusion
CS end Splx(0)

IC_IRQ_ENAB
LE

The following figure 2.1 shows the overall structure of our
TCP/IP stack to be designed and implemented. A frame is
received and read from NIC. The frame is generalized in the
form of packet to be stored in the buffer by network manager
and buffer manager. The packet is transferred to ARP or IP
processing module by network daemon. The IP processing
module then transfers the packet to ICMP, UDP, and TCP
processing module according to the upper protocols. On the
other hand, the packet transferred from the upper level is also
generalized to be stored in the buffer and then, it is transferred
to network device by network manager.

��� ��� ��� ���

������

�	�
�� ��
�

��� ��

��������������

���������������

��������������������

������������
�����

� �����
�������

Figure 2.1 Protocol stack structure.

3. Web Server and CGI for micro embedded system
It needs an application level support such as web server to

control the embedded system like our servo motor control
system remotely. Specially, the remote management mostly
has been used in the custom embedded system not having any
user interface. However, the existing commercial web servers
have excessive many functions and large sizes to be applied to
the small-sized embedded systems. A few necessary functions
to implement small-sized web server are enough for the
remote control embedded system. The functions are
summarized as follows

a. File system support
As a web server provides the existing contents via web, the

contents should be stored somewhere. In other words, the
embedded web server needs a file system for the service
contents to be stored.

b. Dynamic contents support
The dynamic contents should be supported in case of

adopting the remote monitoring interface in web service, while
the most applications need static contents.

c. Form interface support
The form interface has in general the same meaning with

CGI(Common Gateway Interface). CGI enables a server
application to process data received from web pages. The
function which changes embedded system behaviors using the
form interface should be support in the embedded web server.

3.1 Web server implementation
Out of the necessary functions mentioned before for the

embedded web server, Qplus files system was used for the file
system support and CGI also for the dynamic contents and
form interface support. Figure 3.1 shows our web server
behaviors. A packet data received via allowed port number in
web server is transferred to HTTP handler by TCP module.
HTTP handler decides whether the packet data is GET method
or not by parsing HTTP header, and then whether there exists
the requested file or not. It transfers the corresponding file if
there exists while it transfers “HTTP 404 NOT FOUND”,
otherwise.

1656

���������	

������
��	�

�����	������
�	��	������	�

	������

���
��	����	�

����	���
��
�����	

���
��	���
������������ �!�"��	����

#�$

��

#�$

�

Figure 3.1 Web server behavior.

Figure 3.2 shows pseudo codes for the HTTP handler,
including CGI processing code.

INT8U HTTP_Handler() {
 parsing_HTTPHeader();
 if(method == GET) {
 if(CGI) {
 if(CGI_task is exists) {
 CGI_task_create(parameter, temp_file_name);
 TCP_Send(temp_file_name);
 }
 else
 TCP_Send(“HTTP 404 NOT FOUND”);
 }
 else if(HTML) {
 if(requested_file is exists) {
 TCP_Send(requested_file);
 }
 else
 TCP_Send(“HTTP 404 NOT FOUND”);
 }
 }
 else {
 TCP_Send(“HTTP 404 NOT FOUND”);
 }
 closesocket();
}

INT8U TASK_WebServer() {
 createsocket();
 bind();
 register_recvTCP(HTTP_Handler);
 listen();

 destroysocket();
}

Figure 3.2 Pseudo codes for the HTTP handler.

3.2 CGI supprot
The functions such as conventional CGI modules needs to

control an embedded system via web server. It includes
system access and dynamic web page generation. The
conventional module doesn’t fit the embedded system because
of excessive many functions and large size.

There are two methods for CGI request using HTTP
protocol: GET method and POST method. In the GET method,

an argument transferred on request is entered in the request
URI, not in the request body of the HTTP header. In the POST
method, the argument is conversely entered in the request
body of the HTTP header, not in the request URI. Therefore,
the request body should be parsed in addition to the URI for
the POST method.

The GET method how to manage every request by POST
using GET has been widely used for the HTTP request method.
We will implement only GET between the two methods.
However, it has a weak point that security problems can
occurs since the argument is transferred via URI. The original
CGI module executes the corresponding CGI file and transfers
its results via pipeline. However, our Qplus don’t have
execution file concept and don’t support pipeline. Therefore,
we create a task in take place of the execution file and
temporary file in take place of the pipeline such as figure 3.3.

�����������	

��
���������	

����	����
�	��������	�����������

��

���
�����

���������
����

	����� ��	��

��
�����!"����� 	������������������

��

Figure 3.3 CGI behavior for micro embedded system.
�

The results transferred the CGI task are stored in the
temporary file which will be transferred to users. Semaphore
will be used for synchronization between temporary file
creation and transfer. As soon as CGI request is transferred,
the web server executes the corresponding CGI task and waits
a semaphore. The CGI task parses and handles the argument
transferred from the web server. It also stores its results in the
temporary file and posts the semaphore for web server to
handle the subsequent process.

INT8U HTTP_Handler() {
 parsing_HTTPHeader();
 if(method == GET) {
 if(CGI) {
 if(CGI_task is exists) {
 CGI_task_create(parameter, temp_file_name);
 semawait();
 TCP_Send(temp_file_name);
 }
 else
 TCP_Send(“HTTP 404 NOT FOUND”);
 }
 …..
}

INT8U CGI_Task(parameter, temp_file_name) {
 results = processing(parameter);
 write_to_tempfile(temp_file_name, results);
 semapost();
}

Figure 3.4 Pseudo codes for the CGI task code.

4. WEB SERVER TEST

In this paper, we implemented micro a web server and
verified expected behavior. The “index.htm” page which a

1657

user requested displayed on remote web browser. The target
board image requested newly was also displayed successfully.
Figure 4.1 shows the result when multiple clients have been
connected to micro web server loaded on target board. For
multiple clients test, we tested requests which were transferred
at the same time from three thread browsers on a window
system such as figure 4.1, not from separated browsers. We
verified that web pages displayed well in the face of three
clients connection at the same time. The number of clients
connected at the same time can be changed by modifying
“socket_num” which expresses the number of sockets.

Figure 4.1 Multiple clients connection.

For CGI behavior test, we wrote a simple CGI program to
turn on or off LEDs attached on target board via web server.
LED control CGI informs a remote user of current LED status
via web browser and also provides some buttons to turn on or
off LEDs. In this paper, we dealt the number zero port out of
28 GPIOs(General Purpose I/O) on target board based on
SA1110 CPU to control LEDs. Table 4.1 shows registers
related with SA1110 GPIO control.

Table 4.1 GPIO control registers.
Register
address

Name Permission Function

0x90040000 GPLR read only pin status
detection

0x90040004 GPDR Read / write input/output
direction set

0x90040008 GPSR write only output set
0x9004000c GPCR write only output clear

We implement LED control CGI to control and monitor
LEDs by accessing above registers. Figure 4.2 shows pseudo
codes for LED control CGI using GPIO.

GPDR |= GPIO0;

If(CGI_Query is ON)
{
 GPCR |= GPIO0;
}

else if (GCI_Query is OFF)
{
 GPSR |= GPIO0;
}
else
{
 TCP_Send(“HTTP 404 NOT FOUND”);
}

if((GPLR & GPIO0))
{
 Make_Temp_File(GPIO_LED_is_ON);
}
else
{
 Make_Temp_File(GPIO_LED_is_OFF);
}

TCP_Send(Temp_File);

Figure 4.2 Pseudo codes for LED control CGI

5. CONCLUSION

In this paper, we dealt with small size TCP/IP which will be
used for general embedded systems as well as small internet
appliances. In other words, we ported micro TCP/IP protocol
stack on Qplus, real-time micro operating system and also
modified TFTP and DHCP. Finally, the embedded web server
was developed for controlling internet appliances remotely via
internet. TFTP can be behaved as both client and server while
DHCP as only client. Both the protocols behave on UDP. The
web server behaves on TCP, and deals with basic CGI
requests to support remote management and control via
internet.

REFERENCES

[1] Jeremy Bentham, TCP/IP Lean: Web Servers for
Embedded Systems 2nd ed., CMP books, 2002.

[2] M. Tim Jones, TCP/IP Application Layer Protocols for
Embedded Systems, Charles River Media, 2002.

[3] Douglas E. Comer and David L. Stevens,
Internetworking With TCP/IP Vol I, 4th ed. : Principles,
Protocols, and Architecture, Prentice Hall, 2000.

[4] Douglas E. Comer and David L. Stevens,
Internetworking With TCP/IP Vol II, 3th ed. : Design,
Implementation, and Internals, Prentice Hall, 2000.

[5] Douglas E. Comer and David L. Stevens,
Internetworking With TCP/IP Vol III : Client-Server
Programming and Applications, Prentice Hall, 2000.

[6] EETIMES NETWORKS, “Embedding TCP/IP”, Web
page
http://www.embedded .com/internet/0001/0001ia1.htm

[7] ETRI Embedded OS Team, “Qplus-P/Target Builder”,
Web page http://qplus.etri.re.kr/qplus-p

1658

	Main Menu
	Previous Menu
	Search CD-ROM
	Print

