• Title/Summary/Keyword: Micro Powder

Search Result 473, Processing Time 0.027 seconds

A control dispersion of $TiO_2$ nano powder for electronic paper of electrophoresis (전기영동형 전자종이를 위한 $TiO_2$ 나노분말의 분산 제어)

  • Kim, Jung-Hee;Oh, Hyo-Jin;Lee, Nam-Hee;Hwang, Jong-Sun;Kim, Sun-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.324-327
    • /
    • 2005
  • An electrophoretic display using $TiO_2$ particles is the most promising candidate because it offers various advantages such as ink-on-paper appearance, good contrast ratio, wide viewing angle, image stability in the off-state and extremely low power consumption. The core technology of electrophoretic display is the dispersion controlling of $TiO_2$ nano particles in nonaqueous solution. To prepare an ink for electronic paper using electrophoretic properties of $TiO_2$ nano particles, cyclohexane with low dielectric constant and transparency, polyethylene for producing polymer coating layer which reduces apparent gravity of $TiO_2$, and $TiO_2$ powders were mixed together by planetary-mill. The zeta-potential value of $TiO_2$ particles in cyclohexane was measured about -40mV, but was measured over -110mV by dispersant attached to polyethylene-coated $TiO_2$ surface. Prepared electronic ink was filled in cross patterned micro-wall with $200{\mu}m$ in width and $40{\mu}m$ in height on ITO glass designed by photolithography. The response time of electronic paper evaluated by mobility of $TiO_2$ particle between micro-walls was measured 0.067sec, but the drift velocity from reflectance wave form during reverse from of electronic ink was measured 0.07cm/sec.

  • PDF

Evaluation of Mechanical Properties by Using Instrumented Indentation Testing for Resistance Spot Welds (비파괴 계장화 압입시험을 이용한 저항 점용접부 물성 평가)

  • Choi, Chul-Young;Kim, Jun-Ki;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Yeong-Do
    • Journal of Powder Materials
    • /
    • v.18 no.1
    • /
    • pp.64-72
    • /
    • 2011
  • Nondestructive instrumented indentation test is the method to evaluate the mechanical properties by analyzing load - displacement curve when forming indentation on the surface of the specimen within hundreds of micro-indentation depth. Resistance spot welded samples are known to difficult to measure the local mechanical properties due to the combination of microstructural changes with heat input. Particularly, more difficulties arise to evaluate local mechanical properties of resistance spot welds because of having narrow HAZ, as well as dramatic changed in microstructure and hardness properties across the welds. In this study, evaluation of the local mechanical properties of resistance spot welds was carried out using the characterization of Instrumented Indentation testing. Resistance spot welding were performed for 590MPa DP (Dual Phase) steels and 780MPa TRIP (Transformation Induced Plasticity) steels following ISO 18278-2 condition. Mechanical properties of base metal using tensile test and Instrumented Indentation test showed similar results. Also it is possible to measure local mechanical properties of the center of fusion zone, edge of fusion zone, HAZ and base metal regions by using instrumented indentation test. Therefore, measurement of local mechanical properties using instrumented indentation test is efficient, reliable and relatively simple technique to evaluate the tensile strength, yield strength and hardening exponent.

Investigation on Fe-Hf-B-Nb-P-C Soft Magnetic Powders Prepared by High-Pressure Gas Atomization (고압 가스 분무법을 이용한 Fe-Hf-B-Nb-P-C 연자성 분말 제조 및 특성 평가)

  • Jeong, Jae Won;Yang, Dong-Yeol;Kim, Ki Bong;Lee, Junhong;Kim, Young Ja;Lim, Tae-Soo;Yang, Sangsun;Lee, Min Ha;Kim, Hwi Jun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.391-396
    • /
    • 2016
  • In this study, ultra-fine soft-magnetic micro-powders are prepared by high-pressure gas atomization of an Fe-based alloy, Fe-Hf-B-Nb-P-C. Spherical powders are successfully obtained by disintegration of the alloy melts under high-pressure He or $N_2$ gas. The mean particle diameter of the obtained powders is $25.7{\mu}m$ and $42.1{\mu}m$ for He and $N_2$ gas, respectively. Their crystallographic structure is confirmed to be amorphous throughout the interior when the particle diameter is less than $45{\mu}m$. The prepared powders show excellent soft magnetic properties with a saturation magnetization of 164.5 emu/g and a coercivity of 9.0 Oe. Finally, a toroidal core is fabricated for measuring the magnetic permeability, and a ${\mu}_r$ of up to 78.5 is obtained. It is strongly believed that soft magnetic powders prepared by gas atomization will be beneficial in the fabrication of high-performance devices, including inductors and motors.

Investigation for Microstructure and Hardness of Welded Zone of Cu-Ni Alloy using W92-Ni-Fe Sintering Tool (W92-Ni-Fe 소결툴을 이용한 Cu-Ni 합금의 용접부미세조직과 경도 특성)

  • Yoon, Tae-Jin;Park, Sang-Won;Kang, Myung-Chang;Noh, Joong-Suk;Chung, Sung-Wook;Kang, Chung-Yun
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • In this study, the effect of the friction stir welding (FSW) was compared with that of the gas tungsten arc welding (GTAW) on the microstructure and microhardness of Cu-Ni alloy weldment. The weldment of 10 mm thickness was fabricated by FSW and GTAW, respectively. Both weldments were compared with each other by optical microstructure, microhardness test and grain size measurement. Results of this study suggest that the microhardness decreased from the base metal (BM) to the heat affected zone (HAZ) and increased at fusion zone (FZ) of GTAW and stir zone (SZ) of FSW. the minimum Hv value of both weldment was obtained at HAZ, respectively, which represents the softening zone, whereas Hv value of FSW weldment was little higher than that of GTAW weldment. These phenomena can be explained by the grain size difference between HAZs of each weldment. Grain size was increased at the HAZ during FSW and GTAW. Because FSW is a solid-state joining process obtaining the lower heat-input generated by rotating shoulder than heat generated in the arc of GTAW.

CNT Growth Behavior on Ti Substrate by Catalytic CVD Process with Temperature Gradient in Tube Furnace (촉매 화학기상증착 공정에서 온도구배 설정을 통한 타이타늄 기판에서의 CNT 성장 거동)

  • Park, Ju Hyuk;Byun, Jong Min;Kim, Hyung Soo;Suk, Myung-Jin;Oh, Sung-Tag;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.371-376
    • /
    • 2014
  • In this study, modified catalytic chemical vapor deposition (CCVD) method was applied to control the CNTs (carbon nanotubes) growth. Since titanium (Ti) substrate and iron (Fe) catalysts react one another and form a new phase ($Fe_2TiO_5$) above $700^{\circ}C$, the decrease of CNT yield above $800^{\circ}C$ where methane gas decomposes is inevitable under common CCVD method. Therefore, we synthesized CNTs on the Ti substrate by dividing the tube furnace into two sections (left and right) and heating them to different temperatures each. The reactant gas flew through from the end of the right tube furnace while the Ti substrate was placed in the center of the left tube furnace. When the CNT growth temperature was set $700/950^{\circ}C$ (left/right), CNTs with high yield were observed. Also, by examining the micro-structure of CNTs of $700/950^{\circ}C$, it was confirmed that CNTs show the bamboo-like structure.

Dispersion Behaviors of Y2O3 Particles Into Aisi 316L Stainless Steel by Using Laser Cladding Technology (레이저 클래딩법을 이용한 AISI 316L 스테인리스강 내 Y2O3입자의 분산거동)

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won;Lee, Yang-Kyu
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.269-274
    • /
    • 2013
  • The present work investigated the dispersion behavior of $Y_2O_3$ particles into AISI 316L SS manufactured using laser cladding technology. The starting particles were produced by high energy ball milling in 10 min for prealloying, which has a trapping effect and homogeneous dispersion of $Y_2O_3$ particles, followed by laser cladding using $CO_2$ laser source. The phase and crystal structures of the cladded alloys were examined by XRD, and the cross section was characterized using SEM. The detailed microstructure was also studied through FE-TEM. The results clearly indicated that as the amount of $Y_2O_3$ increased, micro-sized defects consisted of coarse $Y_2O_3$ were increased. It was also revealed that homogeneously distributed spherical precipitates were amorphous silicon oxides containing yttrium. This study represents much to a new technology for the manufacture and maintenance of ODS alloys.

An Investigation of the Stability of Y2O3 and Sintering Behavior of Fe-Based ODS Particles Prepared by High Energy Ball Milling

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.275-279
    • /
    • 2013
  • Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, followed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-$2Y_2O_3$ (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures ($900{\sim}1100^{\circ}C$). Mechanically-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron microscopy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of $Y_2O_3$, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the density of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of $YCrO_3$.

Surface Quality and Corrosion of Additively Manufactured STS316L Treated by Ultrasonic Nanocrystal Surface Modification (적층제조된 스테인레스 316L에 대한 초음파나노표면개질에 따른 표면특성 및 부식성에 관한 연구)

  • Kim, Jun-Ho;Oh, Yeong-Taek;Park, Han-Byeol;Lee, Dong-Ho;Kim, Hwa-Jeong;Kim, Ui-Jun;Shim, Do-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.94-103
    • /
    • 2020
  • This study investigated the effects of ultrasonic nanocrystal surface modification (UNSM) on the deteriorated surface of AISI SUS316L additively manufactured (AM) using the powder bed fusion (PBF) technique. Specifically, the effects of UNSM conditions on surface topology, hardness, and anti-corrosion were examined. Before UNSM treatment, the stainless steel 316L powder was processed via the PBF machine to prepare a substrate. We observed surface changes due to UNSM treatments in PBF SUS316L substrates and examined the correlation between topology changes, roughness, hardness, and anti-corrosion. After UNSM treatment, the coarse as-built surface was refined, and a regular micro-profile was implemented. Compared to the non-treated PBF sample, the waviness and roughness of the surfaces after UNSM treatment decreased by up to 56.0% and 94.5%, respectively, and decreased further as the interval decreased. The hardness improved by up to 63.0% at a maximum depth of 500 ㎛ from top surface by the UNSM treatment. The results of the corrosion test showed that the corrosion resistance of the UNSM specimens was moderately improved compared to that of the untreated surface. This study confirmed that UNSM is an effective post-processing technique for additively manufactured parts.

Thermoelectric Properties of Porous Mg3Sb2 Based Compounds Fabricated by Reactive Liquid Phase Sintering (반응성 액상 소결법으로 제조한 다공성 Mg3Sb2계 화합물의 열전물성)

  • Jang, Kyung-Wook;Kim, In-Ki;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • The porous $Mg_3Sb_2$ based compounds with 60~70% of relative density were prepared by powder compaction at room temperature and reactive liquid phase sintering at 1023 K for 4hrs. The stoichiometric $Mg_3Sb_2$ compounds were synthesized from elemental Sb and Mg powder in the mixing range of 61~63 at% Mg. The increased scattering effect due to the micro-pores reduced the mobility of the charge carrier and the phonon, which caused the electrical conductivity and the thermal conductivity to decrease, respectively. But the scattering effect was greater for the electrical conductivity than for the thermal conductivity. Excess Mg alloyed in the $Mg_3Sb_2$ compounds decreased the electrical conductivity, but had no effect on the thermal conductivity. On the other hand, the large increase of the Seebeck coefficient was the result of a decrease in the charge carrier density due to the excess Mg. Dimensionless figure of merit of the porous $Mg_3Sb_2$ compound reached a maximum value of 0.28 at 61 at% Mg. The obtained value was similar to that of $Mg_3Sb_2$ compounds having little pores.

Fabrication Processes and Properties of High Volume Fraction SiC Particulate Preform for Metal Matrix Composites (금속복합재료용 고부피분율 SiC분말 예비성형체의 제조공정과 특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.184-191
    • /
    • 1998
  • The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 ${\mu}m$ in diameter, $SiO_2$ as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at $25^{\circ}C$ for 36 hrs and forced drying at 10$0^{\circ}C$ for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of $SiO_2$ flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120$0^{\circ}C$ under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110$0^{\circ}C$. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite $SiO_2$ phase at the interfaces of SiC particulates.

  • PDF