Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.2.68

Thermoelectric Properties of Porous Mg3Sb2 Based Compounds Fabricated by Reactive Liquid Phase Sintering  

Jang, Kyung-Wook (Department of Materials Science and Engineering, Hanseo University)
Kim, In-Ki (Department of Materials Science and Engineering, Hanseo University)
Kim, Il-Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
Publication Information
Korean Journal of Materials Research / v.25, no.2, 2015 , pp. 68-74 More about this Journal
Abstract
The porous $Mg_3Sb_2$ based compounds with 60~70% of relative density were prepared by powder compaction at room temperature and reactive liquid phase sintering at 1023 K for 4hrs. The stoichiometric $Mg_3Sb_2$ compounds were synthesized from elemental Sb and Mg powder in the mixing range of 61~63 at% Mg. The increased scattering effect due to the micro-pores reduced the mobility of the charge carrier and the phonon, which caused the electrical conductivity and the thermal conductivity to decrease, respectively. But the scattering effect was greater for the electrical conductivity than for the thermal conductivity. Excess Mg alloyed in the $Mg_3Sb_2$ compounds decreased the electrical conductivity, but had no effect on the thermal conductivity. On the other hand, the large increase of the Seebeck coefficient was the result of a decrease in the charge carrier density due to the excess Mg. Dimensionless figure of merit of the porous $Mg_3Sb_2$ compound reached a maximum value of 0.28 at 61 at% Mg. The obtained value was similar to that of $Mg_3Sb_2$ compounds having little pores.
Keywords
liquid phase sintering; thermoelectric; porous; $Mg_3Sb_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Chen, G. Dresselhaus, M. S. Dresselhaus, J. P. Fleurial and T. Caillat, Int. Mater. Rev., 48(1), 45 (2003).   DOI   ScienceOn
2 C. Wood, Rep. Prog. Phys., 51(4), 459 (1988).   DOI   ScienceOn
3 J. de Boor, D. S. Kim, X. Ao, M. Becker, N. F. Hinsche, I. Mertig, P. Zahn, and V. Schmidt, Appl. Phys. A, 107(4), 789 (2012).   DOI
4 J. Tang, H. Wang, D. H. lee, M. Fardy, Z. Huo, T. P. Russel, and P. Yang, Nano Lett., 10(10), 4279 (2010).   DOI   ScienceOn
5 Goldsmid, J. Electronic Mat., 39(9), 1987 (2010).   DOI
6 Goldsmid, Materials, 2(3), 903 (2009).   DOI
7 G. J. Snyder and E. S. Toberer, Nat. Mater., 7(2), 105 (2008).   DOI   ScienceOn
8 T. Kajikawa, N. Kimura, T. Yokoyama, Proceedings of the 22nd International Conference on Thermoelectrics (LaGrande Motte, France, 2003), p. 305.
9 C. L. Condron, S. M. Kauzlarich, F. Gascoin and G. J. Snyder, J. Solid State Chem., 179(8), 2252 (2006).   DOI   ScienceOn
10 F. Ahmadpour, T. Kolodiazhnyi and Y. Mozharivskyj, J. Solid State Chem., 180(9), 2420 (2007).   DOI   ScienceOn
11 H. X. Xin, X. Y. Qin, C. J. Song, K. X. Zhang and J. Jang, J. Phys D: Appl. Phys, 42(16), 165403 (2009).   DOI
12 V. Ponnambalam and D. T. Morelli, J. Elect. Mat., 42(7), 1307 (2013).   DOI   ScienceOn
13 A. Bhardwaj and D. K. Mirsa, RSC Adv., 4(65), 34552 (2014).   DOI   ScienceOn
14 H. Okamoto and J. Phase Equilib. Diffus., 31(6), 574 (2010).   DOI
15 I. K. Kim, K. W. Jang and H. J. Oh, J. korean crytal. Growth Cryst. Technol., 24(8), 176 (2012).
16 H. X. Xin, X. Y. Qin, X. G. Zhu and Y. Liu, J. Phys. D: Appl. Phys., 39, 375 (2006).   DOI
17 M. Martinez-Ripoll, A. Hasse and G. Brauer, Acta Cryst., B30, 2006 (1974).
18 H. Lee, D. Vashaee, D. Z. Wang, M. Dresselhaus, Z. F. Ren, and G. Chen, J. Appl. Phys., 107(9), 094308 (2010).   DOI   ScienceOn
19 T. M. Tritt, Recent Trends in Thermoelectric Materials Research I, p.10, Academic Press, Sandiego, USA (2001).
20 P. Pichanusakorn and P. R. Bandarua, Appl. Phys. Lett., 94(22), 223108 (2009).   DOI   ScienceOn